alexandria/notes/2024/math-4a/week-1/main.typ

26 lines
873 B
Text
Raw Normal View History

2024-10-07 19:43:28 -07:00
#import "@preview/unequivocal-ams:0.1.1": ams-article, theorem, proof
#show: ams-article.with(
title: [Week 2],
authors: (
(
name: "Youwen Wu",
organization: [University of California, Santa Barbara],
email: "youwen@ucsb.edu",
url: "https://youwen.dev",
),
),
bibliography: bibliography("refs.bib"),
)
= Vectors, linear combinations, spans, matrix-vector product.
- Consider a whole new way of looking at linear systems
- Add vectors entrywise, head to tail
- Multiply vectors via scaling
- A more flexible way to draw a line. For a line through point $p$, in direction $arrow(d)$, use $arrow(p) + t arrow(d), t in RR$. Intuition: Add a vector $arrow(p)$ pointing to point $p$ and compose a vector pointing in the intended direction $arrow(d)$ head to tail.
A linear combination is
$ arrow(y) = sum_(k=1)^n alpha_n arrow(v)_n $