alexandria/quartz/depgraph.ts

229 lines
5.9 KiB
TypeScript
Raw Normal View History

2024-12-29 02:11:31 -08:00
export default class DepGraph<T> {
// node: incoming and outgoing edges
_graph = new Map<T, { incoming: Set<T>; outgoing: Set<T> }>()
constructor() {
this._graph = new Map()
}
export(): Object {
return {
nodes: this.nodes,
edges: this.edges,
}
}
toString(): string {
return JSON.stringify(this.export(), null, 2)
}
// BASIC GRAPH OPERATIONS
get nodes(): T[] {
return Array.from(this._graph.keys())
}
get edges(): [T, T][] {
let edges: [T, T][] = []
this.forEachEdge((edge) => edges.push(edge))
return edges
}
hasNode(node: T): boolean {
return this._graph.has(node)
}
addNode(node: T): void {
if (!this._graph.has(node)) {
this._graph.set(node, { incoming: new Set(), outgoing: new Set() })
}
}
// Remove node and all edges connected to it
removeNode(node: T): void {
if (this._graph.has(node)) {
// first remove all edges so other nodes don't have references to this node
for (const target of this._graph.get(node)!.outgoing) {
this.removeEdge(node, target)
}
for (const source of this._graph.get(node)!.incoming) {
this.removeEdge(source, node)
}
this._graph.delete(node)
}
}
forEachNode(callback: (node: T) => void): void {
for (const node of this._graph.keys()) {
callback(node)
}
}
hasEdge(from: T, to: T): boolean {
return Boolean(this._graph.get(from)?.outgoing.has(to))
}
addEdge(from: T, to: T): void {
this.addNode(from)
this.addNode(to)
this._graph.get(from)!.outgoing.add(to)
this._graph.get(to)!.incoming.add(from)
}
removeEdge(from: T, to: T): void {
if (this._graph.has(from) && this._graph.has(to)) {
this._graph.get(from)!.outgoing.delete(to)
this._graph.get(to)!.incoming.delete(from)
}
}
// returns -1 if node does not exist
outDegree(node: T): number {
return this.hasNode(node) ? this._graph.get(node)!.outgoing.size : -1
}
// returns -1 if node does not exist
inDegree(node: T): number {
return this.hasNode(node) ? this._graph.get(node)!.incoming.size : -1
}
forEachOutNeighbor(node: T, callback: (neighbor: T) => void): void {
this._graph.get(node)?.outgoing.forEach(callback)
}
forEachInNeighbor(node: T, callback: (neighbor: T) => void): void {
this._graph.get(node)?.incoming.forEach(callback)
}
forEachEdge(callback: (edge: [T, T]) => void): void {
for (const [source, { outgoing }] of this._graph.entries()) {
for (const target of outgoing) {
callback([source, target])
}
}
}
// DEPENDENCY ALGORITHMS
// Add all nodes and edges from other graph to this graph
mergeGraph(other: DepGraph<T>): void {
other.forEachEdge(([source, target]) => {
this.addNode(source)
this.addNode(target)
this.addEdge(source, target)
})
}
// For the node provided:
// If node does not exist, add it
// If an incoming edge was added in other, it is added in this graph
// If an incoming edge was deleted in other, it is deleted in this graph
updateIncomingEdgesForNode(other: DepGraph<T>, node: T): void {
this.addNode(node)
// Add edge if it is present in other
other.forEachInNeighbor(node, (neighbor) => {
this.addEdge(neighbor, node)
})
// For node provided, remove incoming edge if it is absent in other
this.forEachEdge(([source, target]) => {
if (target === node && !other.hasEdge(source, target)) {
this.removeEdge(source, target)
}
})
}
// Remove all nodes that do not have any incoming or outgoing edges
// A node may be orphaned if the only node pointing to it was removed
removeOrphanNodes(): Set<T> {
let orphanNodes = new Set<T>()
this.forEachNode((node) => {
if (this.inDegree(node) === 0 && this.outDegree(node) === 0) {
orphanNodes.add(node)
}
})
orphanNodes.forEach((node) => {
this.removeNode(node)
})
return orphanNodes
}
// Get all leaf nodes (i.e. destination paths) reachable from the node provided
// Eg. if the graph is A -> B -> C
// D ---^
// and the node is B, this function returns [C]
getLeafNodes(node: T): Set<T> {
let stack: T[] = [node]
let visited = new Set<T>()
let leafNodes = new Set<T>()
// DFS
while (stack.length > 0) {
let node = stack.pop()!
// If the node is already visited, skip it
if (visited.has(node)) {
continue
}
visited.add(node)
// Check if the node is a leaf node (i.e. destination path)
if (this.outDegree(node) === 0) {
leafNodes.add(node)
}
// Add all unvisited neighbors to the stack
this.forEachOutNeighbor(node, (neighbor) => {
if (!visited.has(neighbor)) {
stack.push(neighbor)
}
})
}
return leafNodes
}
// Get all ancestors of the leaf nodes reachable from the node provided
// Eg. if the graph is A -> B -> C
// D ---^
// and the node is B, this function returns [A, B, D]
getLeafNodeAncestors(node: T): Set<T> {
const leafNodes = this.getLeafNodes(node)
let visited = new Set<T>()
let upstreamNodes = new Set<T>()
// Backwards DFS for each leaf node
leafNodes.forEach((leafNode) => {
let stack: T[] = [leafNode]
while (stack.length > 0) {
let node = stack.pop()!
if (visited.has(node)) {
continue
}
visited.add(node)
// Add node if it's not a leaf node (i.e. destination path)
// Assumes destination file cannot depend on another destination file
if (this.outDegree(node) !== 0) {
upstreamNodes.add(node)
}
// Add all unvisited parents to the stack
this.forEachInNeighbor(node, (parentNode) => {
if (!visited.has(parentNode)) {
stack.push(parentNode)
}
})
}
})
return upstreamNodes
}
}