auto-update(nvim): 2025-01-06 17:45:05
This commit is contained in:
parent
91cac8ff96
commit
560e8fdcb9
2 changed files with 65 additions and 30 deletions
|
@ -1,5 +1,5 @@
|
||||||
#import "@preview/ctheorems:1.1.2": *
|
#import "@preview/ctheorems:1.1.3": *
|
||||||
#import "@preview/showybox:2.0.1": showybox
|
#import "@preview/showybox:2.0.3": showybox
|
||||||
|
|
||||||
#let colors = (
|
#let colors = (
|
||||||
rgb("#9E9E9E"),
|
rgb("#9E9E9E"),
|
||||||
|
@ -257,27 +257,33 @@
|
||||||
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
||||||
)
|
)
|
||||||
|
|
||||||
#let problem = problem-style("problem", "Problem")
|
#let exercise = problem-style("item", "Exercise")
|
||||||
|
#let problem = exercise
|
||||||
|
|
||||||
#let theorem-style = builder-thmbox(
|
#let theorem-style = builder-thmbox(
|
||||||
color: colors.at(6),
|
color: colors.at(6),
|
||||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
||||||
)
|
)
|
||||||
|
|
||||||
#let theorem = theorem-style("theorem", "Theorem")
|
#let example-style = builder-thmbox(
|
||||||
#let lemma = theorem-style("lemma", "Lemma")
|
color: colors.at(16),
|
||||||
#let corollary = theorem-style("corollary", "Corollary")
|
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
||||||
|
)
|
||||||
|
|
||||||
|
#let theorem = theorem-style("item", "Theorem")
|
||||||
|
#let lemma = theorem-style("item", "Lemma")
|
||||||
|
#let corollary = theorem-style("item", "Corollary")
|
||||||
|
|
||||||
#let definition-style = builder-thmline(color: colors.at(8))
|
#let definition-style = builder-thmline(color: colors.at(8))
|
||||||
|
|
||||||
#let definition = definition-style("definition", "Definition")
|
// #let definition = definition-style("definition", "Definition")
|
||||||
#let proposition = definition-style("proposition", "Proposition")
|
#let proposition = definition-style("item", "Proposition")
|
||||||
#let remark = definition-style("remark", "Remark")
|
#let remark = definition-style("item", "Remark")
|
||||||
#let observation = definition-style("observation", "Observation")
|
#let observation = definition-style("item", "Observation")
|
||||||
|
|
||||||
#let example-style = builder-thmline(color: colors.at(16))
|
// #let example-style = builder-thmline(color: colors.at(16))
|
||||||
|
|
||||||
#let example = example-style("example", "Example").with(numbering: none)
|
#let example = example-style("item", "Example").with(numbering: none)
|
||||||
|
|
||||||
#let proof(body, name: none) = {
|
#let proof(body, name: none) = {
|
||||||
thmtitle[Proof]
|
thmtitle[Proof]
|
||||||
|
@ -289,3 +295,26 @@
|
||||||
h(1fr)
|
h(1fr)
|
||||||
$square$
|
$square$
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#let fact = thmplain(
|
||||||
|
"item",
|
||||||
|
"Fact",
|
||||||
|
titlefmt: strong,
|
||||||
|
separator: ".",
|
||||||
|
|
||||||
|
inset: 0pt,
|
||||||
|
)
|
||||||
|
#let abuse = thmplain(
|
||||||
|
"item",
|
||||||
|
"Abuse of Notation",
|
||||||
|
titlefmt: strong,
|
||||||
|
separator: ".",
|
||||||
|
inset: 0pt,
|
||||||
|
)
|
||||||
|
#let definition = thmplain(
|
||||||
|
"item",
|
||||||
|
"Definition",
|
||||||
|
titlefmt: strong,
|
||||||
|
separator: ".",
|
||||||
|
inset: 0pt,
|
||||||
|
)
|
||||||
|
|
|
@ -1,8 +1,11 @@
|
||||||
#import "./dvd.typ": *
|
#import "./dvd.typ": *
|
||||||
|
#import "@preview/ctheorems:1.1.3": *
|
||||||
|
|
||||||
#show: dvdtyp.with(
|
#show: dvdtyp.with(
|
||||||
title: "Probability and Statistics",
|
title: "PSTAT120A Course Notes",
|
||||||
author: "Youwen Wu",
|
author: "Youwen Wu",
|
||||||
|
date: "Winter 2024",
|
||||||
|
subtitle: "Taught by Brian Wainwright",
|
||||||
)
|
)
|
||||||
|
|
||||||
#outline()
|
#outline()
|
||||||
|
@ -11,9 +14,9 @@
|
||||||
|
|
||||||
== Preliminaries
|
== Preliminaries
|
||||||
|
|
||||||
#definition("Statistics")[
|
#definition[
|
||||||
The science dealing with the collection, summarization, analysis, and
|
Statistics is the science dealing with the collection, summarization,
|
||||||
interpretation of data.
|
analysis, and interpretation of data.
|
||||||
]
|
]
|
||||||
|
|
||||||
== Set theory for dummies
|
== Set theory for dummies
|
||||||
|
@ -21,8 +24,8 @@
|
||||||
A terse introduction to elementary set theory and the basic operations upon
|
A terse introduction to elementary set theory and the basic operations upon
|
||||||
them.
|
them.
|
||||||
|
|
||||||
#definition[Set][
|
#definition[
|
||||||
A collection of elements.
|
A Set is a collection of elements.
|
||||||
]
|
]
|
||||||
|
|
||||||
#example[Examples of sets][
|
#example[Examples of sets][
|
||||||
|
@ -42,12 +45,12 @@ $ {"expression with" x | "conditions on" x} $
|
||||||
|
|
||||||
We also have notation for working with sets:
|
We also have notation for working with sets:
|
||||||
|
|
||||||
With arbitrary sets $A$, $B$, $Omega$:
|
With arbitrary sets $A$, $B$:
|
||||||
|
|
||||||
+ $a in A$ ($a$ is a member of the set $A$)
|
+ $a in A$ ($a$ is a member of the set $A$)
|
||||||
+ $a in.not A$ ($a$ is not a member of the set $A$)
|
+ $a in.not A$ ($a$ is not a member of the set $A$)
|
||||||
+ $A subset.eq Omega$ (Set theory: $A$ is a subset of $Omega$) (Stats: $A$ is a sample space in $Omega$)
|
+ $A subset.eq B$ (Set theory: $A$ is a subset of $B$) (Stats: $A$ is a sample space in $B$)
|
||||||
+ $A subset Omega$ (Proper subset: $A != Omega$)
|
+ $A subset B$ (Proper subset: $A != B$)
|
||||||
+ $A^c$ or $A'$ (read "complement of $A$")
|
+ $A^c$ or $A'$ (read "complement of $A$")
|
||||||
+ $A union B$ (Union of $A$ and $B$. Gives a set with both the elements of $A$ and $B$)
|
+ $A union B$ (Union of $A$ and $B$. Gives a set with both the elements of $A$ and $B$)
|
||||||
+ $A sect B$ (Intersection of $A$ and $B$. Gives a set consisting of the elements in *both* $A$ and $B$)
|
+ $A sect B$ (Intersection of $A$ and $B$. Gives a set consisting of the elements in *both* $A$ and $B$)
|
||||||
|
@ -56,13 +59,14 @@ With arbitrary sets $A$, $B$, $Omega$:
|
||||||
|
|
||||||
We can also write a few of these operations precisely as set comprehensions.
|
We can also write a few of these operations precisely as set comprehensions.
|
||||||
|
|
||||||
+ $A subset Omega => A = {a | a in Omega, forall a in A}$
|
+ $A subset B => A = {a | a in B, forall a in A}$
|
||||||
+ $A union B = {x | x in A or x in B}$ (here $or$ is the logical OR)
|
+ $A union B = {x | x in A or x in B}$ (here $or$ is the logical OR)
|
||||||
+ $A sect B = {x | x in A and x in B}$ (here $and$ is the logical AND)
|
+ $A sect B = {x | x in A and x in B}$ (here $and$ is the logical AND)
|
||||||
+ $A \\ B = {a | a in A and a in.not B}$
|
+ $A \\ B = {a | a in A and a in.not B}$
|
||||||
+ $A times B = {(a,b) | forall a in A, forall b in B}$
|
+ $A times B = {(a,b) | forall a in A, forall b in B}$
|
||||||
|
|
||||||
Convince yourself that these definitions are equivalent to the previous ones.
|
Take a moment and convince yourself that these definitions are equivalent to
|
||||||
|
the previous ones.
|
||||||
|
|
||||||
#example[The real plane][
|
#example[The real plane][
|
||||||
The real plane $RR^2$ can be defined as a Cartesian product of $RR$ with itself.
|
The real plane $RR^2$ can be defined as a Cartesian product of $RR$ with itself.
|
||||||
|
@ -70,14 +74,15 @@ Convince yourself that these definitions are equivalent to the previous ones.
|
||||||
$ RR^2 = RR times RR $
|
$ RR^2 = RR times RR $
|
||||||
]
|
]
|
||||||
|
|
||||||
Check your intuition that this makes sense. Why do you think $RR^n$ was chosen as the notation for $n$ dimensional spaces in $RR$?
|
Check your intuition that this makes sense. Why do you think $RR^n$ was chosen
|
||||||
|
as the notation for $n$ dimensional spaces in $RR$?
|
||||||
|
|
||||||
#remark[Disjoint sets][
|
#remark[Disjoint sets][
|
||||||
If $A sect B$ = $emptyset$, then we say that $A$ and $B$ are *disjoint*.
|
If $A sect B$ = $emptyset$, then we say that $A$ and $B$ are *disjoint*.
|
||||||
]
|
]
|
||||||
|
|
||||||
#theorem[Properties of set operations][
|
#fact[Properties of set operations][
|
||||||
+ DeMorgan's Laws:
|
For any sets $A$ and $B$, we have DeMorgan's Laws:
|
||||||
+ $(A union B)' = A' sect B'$
|
+ $(A union B)' = A' sect B'$
|
||||||
+ $(A sect B)' = A' union B'$
|
+ $(A sect B)' = A' union B'$
|
||||||
]
|
]
|
||||||
|
@ -87,9 +92,9 @@ Check your intuition that this makes sense. Why do you think $RR^n$ was chosen a
|
||||||
+ $(sect_i A_i)' = union_i A_i'$
|
+ $(sect_i A_i)' = union_i A_i'$
|
||||||
]
|
]
|
||||||
|
|
||||||
=== Sizes of infinity
|
== Sizes of infinity
|
||||||
|
|
||||||
#definition("Cardinality")[
|
#definition[
|
||||||
Let $N(A)$ be the number of elements in $A$. $N(A)$ is called the _cardinality_ of $A$.
|
Let $N(A)$ be the number of elements in $A$. $N(A)$ is called the _cardinality_ of $A$.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -119,3 +124,4 @@ When a set is uncountably infinite, its cardinality is greater than $aleph_0$.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue