auto-update(nvim): 2025-02-11 16:58:54
This commit is contained in:
parent
14ea8cbefe
commit
5801adf283
2 changed files with 121 additions and 1 deletions
|
@ -1,11 +1,21 @@
|
|||
#import "@youwen/zen:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
#set math.equation(numbering: "(1)")
|
||||
#show math.equation: it => {
|
||||
if it.block and not it.has("label") [
|
||||
#counter(math.equation).update(v => v - 1)
|
||||
#math.equation(it.body, block: true, numbering: none)#label("")
|
||||
] else {
|
||||
it
|
||||
}
|
||||
}
|
||||
|
||||
#show: zen.with(
|
||||
title: "Math 6A Course Notes",
|
||||
author: "Youwen Wu",
|
||||
date: "Winter 2025",
|
||||
subtitle: [Taught by Nathan Scheley],
|
||||
subtitle: [Taught by Nathan Schley],
|
||||
)
|
||||
|
||||
#outline()
|
||||
|
@ -99,3 +109,95 @@ speed over $t$.
|
|||
$
|
||||
s(t) = integral^t_0 ||arrow(c)'(u)|| dif u
|
||||
$
|
||||
|
||||
= Lecture #datetime(day: 12, year: 2025, month: 2).display()
|
||||
|
||||
== Chain rule for multivariate functions
|
||||
|
||||
We find motivation for the chain rule.
|
||||
|
||||
Consider a hiker whose path is given by
|
||||
|
||||
$
|
||||
arrow(c) (t) = <x(t), y(t)>
|
||||
$
|
||||
|
||||
and
|
||||
|
||||
$
|
||||
f(x,y) = x dot y
|
||||
$
|
||||
|
||||
What does $x'(t)$ represent? Speed in $x$-direction. Likewise for $y'(t)$.
|
||||
|
||||
Say $x'(t) = 3$, $y'(t) = 4$. Then how far did we travel in $t$ seconds?
|
||||
|
||||
Suppose our slope in the $x$ direction is given by $m_x = 2$. Suppose the slope
|
||||
in $y$ is $m_y = -2$. In fact $m_x = f_x (x,y)$ and $m_y = f_y (x,y)$ (here
|
||||
$f_k$ is the partial derivative with respect to $k$).
|
||||
|
||||
So each change in $t$ of 1 leads to a change in elevation up 6 meters in
|
||||
$x$-axis and down 8 meters in $y$-axis.
|
||||
|
||||
So the total change $Delta z$ is given by
|
||||
$
|
||||
Delta z = m_x dot Delta x + m_y dot Delta y
|
||||
$
|
||||
and analogously in calculus land
|
||||
|
||||
$
|
||||
(dif z) / (dif t) = (diff f) / (diff x) dot x'(t) + (diff f) / (diff y) dot y'(t)
|
||||
$<chain-rule>
|
||||
|
||||
In fact @chain-rule is the chain rule.
|
||||
|
||||
#fact[
|
||||
$
|
||||
(dif f) / (dif t) = (diff f) / (diff x) dot (diff x) / (diff t) + (diff f) / (diff y) dot (diff y) / (diff t) + (diff f) / (diff z) dot (diff z) / (diff t)
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
Consider $f(x) = x^x$. What is $f'(x)$?
|
||||
|
||||
We can do this with logarithmic differentiation but we can also do this with the multivariable chain rule.
|
||||
|
||||
$
|
||||
f(x,y) =
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
Find the derivative $dif/(dif t) (f(x,y))$, where $f(x,y) = x^y$, $x(t) = t$,
|
||||
and $y(t) = 1$. Assume $t > 0$.
|
||||
]
|
||||
|
||||
#example[
|
||||
Find the partial derivative $diff/(diff s) f(x,y,z)$ where $f(x,y,z) = x^2 y^2 + z^3$, and
|
||||
|
||||
$
|
||||
x(s,t) = s t \
|
||||
y(s, t) = s^2 t \
|
||||
z(s,t) = s t^2
|
||||
$
|
||||
]
|
||||
|
||||
== Implicit differentiation
|
||||
|
||||
Review from single variable: given $f(x,y)$ we can differentiate each term with
|
||||
respect to $x$, then collect all $(dif y)/(dif x)$ terms together and solve for
|
||||
it as a variable to obtain $(dif y)/(dif x) = f'(x,y)$.
|
||||
|
||||
We do something similar for more variables. Main idea: extraneous variables are
|
||||
held constant in practice.
|
||||
|
||||
Example: consider the surface $3x^2 + 5y z + z^3 = 0$. We want $(diff y)/(diff
|
||||
z)$ at some point. Use implicit differentiation by viewing the surface as a
|
||||
level set of some larger function $F(x,y,z) = 3x^2 + 5y z + x^3$ (the level set
|
||||
part is when $F(x,y,z) = 0$).
|
||||
|
||||
By applying the product rule (really the chain rule @chain-rule)
|
||||
$
|
||||
(diff F) / (diff x) = diff / (diff z) (3x^2 + 5 y z + z^3) = diff / (diff z) z^3 = 0 + (5 (diff y) / (diff x) z + 5y) + 3z^2 \
|
||||
(diff y) / (diff z) = - (5y + 3z^2) / (5z)
|
||||
$
|
||||
|
|
|
@ -1385,6 +1385,24 @@ A discrete example:
|
|||
|
||||
== CDFs, PMFs, PDFs
|
||||
|
||||
#definition[
|
||||
Let $X$ be a random variable. If we have a function $f$ such that
|
||||
|
||||
$
|
||||
P(X <= b) = integral^b_(-infinity) f(x) dif x
|
||||
$
|
||||
for all $b in RR$, then $f$ is the *probability density function* of $X$.
|
||||
]
|
||||
|
||||
The probability that the value of $X$ lies in $(-infinity, b]$ equals the area
|
||||
under the curve of $f$ from $-infinity$ to $b$.
|
||||
|
||||
If $f$ satisfies this definition, then for any $B subset RR$ for which integration makes sense,
|
||||
|
||||
$
|
||||
P(X in B) = integral_B f(x) dif x
|
||||
$
|
||||
|
||||
Properties of a CDF:
|
||||
|
||||
Any CDF $F(x) = P(X <= x)$ satisfies
|
||||
|
|
Loading…
Reference in a new issue