From 5c7fd3ae2bf754fd209dfe75001c205d49710a60 Mon Sep 17 00:00:00 2001 From: Youwen Wu Date: Wed, 5 Feb 2025 01:22:45 -0800 Subject: [PATCH] auto-update(nvim): 2025-02-05 01:22:45 --- .../by-course/math-4b/course-notes/main.typ | 49 +++++++++++++++++++ 1 file changed, 49 insertions(+) diff --git a/documents/by-course/math-4b/course-notes/main.typ b/documents/by-course/math-4b/course-notes/main.typ index 6de8a5d..e2c5949 100644 --- a/documents/by-course/math-4b/course-notes/main.typ +++ b/documents/by-course/math-4b/course-notes/main.typ @@ -786,3 +786,52 @@ $ $ where $A$ is the amplitude, $theta$ is the phase angle with $cos theta = (c_1)/sqrt(c_1^2 + c_2^2)$ + +== Some trig review (yuck) + +#fact[ + The following trig identity is useful + + $ + A cos(omega t) + B sin(omega t) = C cos(omega t - gamma) + $ + + where $C = sqrt(A^2 + B^2)$, $sin(gamma) = B/C$, and $cos(gamma) = A/C$. +] + +To find gamma, we can simply use inverse trig functions. + +#example[ + Write $x(t) = -2cos(5t) - sin(5t)$ using only one cosine function: + + First note that $A = -2$, $B - -1$, $omega = 5$. Then by @sus-identity, + + $ + x(t) = -2cos(5t) - sin(5t) \ + = sqrt(5) cos(5t - gamma) + $ + + Now note that + $ + tan(gamma) &= sin(gamma) / cos(gamma) \ + &= 1 / 2 + $ + + Therefore we have the following: + + $ + gamma = arctan(1/2) + $ + + But this is not exactly right. + + Recall that $arctan$ produces outputs only in $[-pi/2, pi/2]$. Therefore if + we want $cos$ and $sin$ to be negative, we need to add an additional $pi$ + term. So in fact + + $ + gamma = arctan(1/2) - pi + $ + + Which makes $cos(5t + pi - arctan(1/2))$ negative. +]