auto-update(nvim): 2025-01-21 17:02:55
This commit is contained in:
parent
c75a8a2b44
commit
7000b98f73
1 changed files with 177 additions and 2 deletions
|
@ -1,6 +1,6 @@
|
||||||
#import "./dvd.typ": *
|
#import "@youwen/zen:0.1.0": *
|
||||||
|
|
||||||
#show: dvdtyp.with(
|
#show: zen.with(
|
||||||
title: "Math 4B Course Notes",
|
title: "Math 4B Course Notes",
|
||||||
author: "Youwen Wu",
|
author: "Youwen Wu",
|
||||||
date: "Winter 2025",
|
date: "Winter 2025",
|
||||||
|
@ -164,3 +164,178 @@ $
|
||||||
We can easily obtain a solution form for any first order linear ODE simply by
|
We can easily obtain a solution form for any first order linear ODE simply by
|
||||||
identifying $p(t)$ and $g(t)$.
|
identifying $p(t)$ and $g(t)$.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
= Lecture #datetime(day: 22, year: 2025, month: 1).display() - existence and uniqueness of solutions
|
||||||
|
|
||||||
|
Midterm 1 is #datetime(month: 1, day: 28, year: 2025).display() in class, covering Chapter 2. Five problems:
|
||||||
|
|
||||||
|
- Solving separable equations (10pts)
|
||||||
|
- Solving Linear ODE (10pts)
|
||||||
|
- Modeling (Newton's law of cooling) (10pts)
|
||||||
|
- Eulers's method (5 pts)
|
||||||
|
- True or false problem (if ODE linear, existence, etc) (5 pts)
|
||||||
|
|
||||||
|
== Existence and uniqueness of solutions to the initial value problem
|
||||||
|
|
||||||
|
Before we looked at particular ODEs. Now we turn our attention to general ODEs.
|
||||||
|
In general ODEs do not have solutions, so let us discuss methods to identify
|
||||||
|
when solutions exist.
|
||||||
|
|
||||||
|
Given a first order initial value problem ODE
|
||||||
|
|
||||||
|
$ y' = F(t,y), underbrace(y(t_0) = y_0, "initial value") $
|
||||||
|
|
||||||
|
When does a solution exist? Is it unique?
|
||||||
|
|
||||||
|
Warm up:
|
||||||
|
|
||||||
|
$ y' = -x / y $
|
||||||
|
|
||||||
|
It's separable and we can solve it.
|
||||||
|
|
||||||
|
$
|
||||||
|
1 / 2 y^2 &= -1 / 2 x^2 + C \
|
||||||
|
y^2 &= 2C - x^2 \
|
||||||
|
y &= plus.minus sqrt(2C - x^2)
|
||||||
|
$
|
||||||
|
|
||||||
|
Say $y(1) = 1$. Then $C = 1$.
|
||||||
|
|
||||||
|
Since $y(1) = 1$, we choose the positive version of solution.
|
||||||
|
|
||||||
|
$ y = sqrt(2 - x^2) $
|
||||||
|
|
||||||
|
The slope field shows that the solutions are semicircles above and below the
|
||||||
|
$x$-axis.
|
||||||
|
|
||||||
|
Consider this initial value
|
||||||
|
|
||||||
|
$
|
||||||
|
y(3) &= 0 \
|
||||||
|
2C &= 9 \
|
||||||
|
y &= plus.minus sqrt(9 - x^2)
|
||||||
|
$
|
||||||
|
|
||||||
|
Now should we choose $+$ or $-$? It seems that either can work, but it turns
|
||||||
|
out that it is not a solution!
|
||||||
|
|
||||||
|
Recall the equation
|
||||||
|
|
||||||
|
$ y' = -x / y $
|
||||||
|
|
||||||
|
With our initial condition, this equation was not defined! So there is no
|
||||||
|
solution for this initial condition.
|
||||||
|
|
||||||
|
Now consider
|
||||||
|
|
||||||
|
$ y' = sqrt(y) $
|
||||||
|
|
||||||
|
Again it is separable
|
||||||
|
|
||||||
|
$
|
||||||
|
integral dif x &= integral sqrt(y) dif y \
|
||||||
|
2y^(1 / 2) &= x + C \
|
||||||
|
$
|
||||||
|
|
||||||
|
With initial condition $y(0) = 0$,
|
||||||
|
|
||||||
|
$
|
||||||
|
y = (x / 2)^2
|
||||||
|
$
|
||||||
|
|
||||||
|
However we lost a solution, since we divided by $sqrt(y)$, which could've been
|
||||||
|
0!
|
||||||
|
|
||||||
|
When $F(t,y)$ (RHS) is not nice (differentiable) at the initial value $(t_0,
|
||||||
|
y_0)$, existence and uniqueness (E/U) could fail. We do have E/U when $F(t,y)$
|
||||||
|
is nice.
|
||||||
|
|
||||||
|
== Existence of solutions to IVT - linear case
|
||||||
|
|
||||||
|
The first order linear ODE is
|
||||||
|
|
||||||
|
$
|
||||||
|
y'(t) = p(t) y(t) = g(t) \
|
||||||
|
$
|
||||||
|
|
||||||
|
Use integrating factor
|
||||||
|
|
||||||
|
$ mu(t) = e^(integral p(t) dif t) $
|
||||||
|
|
||||||
|
We know a general solution using the method of integrating factors.
|
||||||
|
|
||||||
|
$ y(t) = 1 / mu(t) [C + integral mu(t) g(t) dif t] $
|
||||||
|
|
||||||
|
We are assuming that $p(t)$ and $g(t)$ are given continuous functions defined
|
||||||
|
on some interval $I$. The solution $y(t)$ is defined on the same interval
|
||||||
|
$I$.
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
The solution of the initial value problem for a linear equation exists, is
|
||||||
|
unique, and is defined as long as the coefficients in the equation are defined.
|
||||||
|
]
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
Existence and uniqueness are important. It guarantees there is one and only one
|
||||||
|
solution curve passing through an initial point $(t_0, y_0)$.
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Consider
|
||||||
|
$ y'(t) - 1 / t y(t) = 1 / (t^2), y(1) = 0 $
|
||||||
|
|
||||||
|
+ $(-infinity, 0)$
|
||||||
|
+ $(0, infinity)$
|
||||||
|
+ $(-infinity, infinity)$
|
||||||
|
+ $(0, 2)$
|
||||||
|
|
||||||
|
$0$ is a bad value. So we choose either $(0, infinity)$ or $(-infinity, 0)$.
|
||||||
|
But the initial value exists on $(0, infinity)$, so we choose (1).
|
||||||
|
]
|
||||||
|
|
||||||
|
Now let's consider a general first order ODE
|
||||||
|
|
||||||
|
$ y' = F(t,y), y(t_0) = y_0 $
|
||||||
|
|
||||||
|
Now "nice" is not so clear cut.
|
||||||
|
Assume $F(t,y)$ is a "nice" function ($F$, $(diff F)/(diff y)$ are continuous)
|
||||||
|
defined on some rectangle in $(t,y)$-plane.
|
||||||
|
|
||||||
|
#theorem("Existence and uniqueness theorem for ODE")[
|
||||||
|
If the initial point $(t_0, y_0)$ belongs to the rectangle where $F(t,y)$ is
|
||||||
|
defined, then this initial value problem has a *unique solution* $y(t)$ defined
|
||||||
|
on some time interval $I$.
|
||||||
|
]<eutheorem>
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Find the solution of the initial value problem
|
||||||
|
$
|
||||||
|
y' = y^2, y(0) = 1 \
|
||||||
|
y(t) = 1 / (1-t)
|
||||||
|
$
|
||||||
|
|
||||||
|
The function on the right side is
|
||||||
|
$ F(t,y) = y^2 $
|
||||||
|
It's defined for all $t$ and $y$. Nevertheless the largest interval on which
|
||||||
|
the solution is defined is $-infinity < t < 1$.
|
||||||
|
]
|
||||||
|
|
||||||
|
Consider IVP
|
||||||
|
|
||||||
|
$
|
||||||
|
y' = sqrt(9 - y^2), y(1) = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
Any E/U problems?
|
||||||
|
|
||||||
|
== Numerical approximations with Euler's method
|
||||||
|
|
||||||
|
We can determine if solutions exist using @eutheorem but in general we cannot
|
||||||
|
find an explicit solution. Instead we approximate the solution.
|
||||||
|
|
||||||
|
Consider the IVP
|
||||||
|
|
||||||
|
$ y' = 1 / 2 cos(y) + t, y(0) = -1 $
|
||||||
|
|
||||||
|
The righthand side is nice, by @eutheorem, it has a unique solution. We can't
|
||||||
|
find an explicit solution.
|
||||||
|
|
Loading…
Reference in a new issue