auto-update(nvim): 2025-01-06 15:32:17
Some checks are pending
Deploy Quartz site to GitHub Pages using Nix / build (push) Waiting to run
Deploy Quartz site to GitHub Pages using Nix / deploy (push) Blocked by required conditions

This commit is contained in:
Youwen Wu 2025-01-06 15:32:17 -08:00
parent a3c734b777
commit 735ab2fc25
Signed by: youwen5
GPG key ID: 865658ED1FE61EC3
3 changed files with 408 additions and 3 deletions

View file

@ -45,10 +45,12 @@
if loc.page() == 1 { if loc.page() == 1 {
return return
} }
box(stroke: (bottom: 0.7pt), inset: 0.2em)[#text( box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
font: "New Computer Modern", font: "New Computer Modern",
)[ )[
#author #h(1fr)#title *#author* --- #datetime.today().display("[day] [month repr:long] [year]")
#h(1fr)
*#title*
]] ]]
}), }),
paper: paper-size, paper: paper-size,
@ -86,7 +88,7 @@
#if author != none [#text(16pt)[by #author]] #if author != none [#text(16pt)[by #author]]
#v(1.2em, weak: true) #v(1.2em, weak: true)
#if subtitle != none [#text(12pt, weight: 500)[#( #if subtitle != none [#text(12pt, weight: 500)[#(
datetime.today().display("[month repr:long] [day], [year]") datetime.today().display("[day] [month repr:long] [year]")
)]] )]]
] ]

View file

@ -0,0 +1,282 @@
#import "@preview/ctheorems:1.1.2": *
#import "@preview/showybox:2.0.1": showybox
#let colors = (
rgb("#9E9E9E"),
rgb("#F44336"),
rgb("#E91E63"),
rgb("#9C27B0"),
rgb("#673AB7"),
rgb("#3F51B5"),
rgb("#2196F3"),
rgb("#03A9F4"),
rgb("#00BCD4"),
rgb("#009688"),
rgb("#4CAF50"),
rgb("#8BC34A"),
rgb("#CDDC39"),
rgb("#FFEB3B"),
rgb("#FFC107"),
rgb("#FF9800"),
rgb("#FF5722"),
rgb("#795548"),
rgb("#9E9E9E"),
)
#let dvdtyp(
title: "",
subtitle: "",
author: "",
abstract: none,
bibliography: none,
paper-size: "a4",
body,
) = {
set document(title: title, author: author)
set std.bibliography(style: "springer-mathphys", title: [References])
show: thmrules
set page(
numbering: "1",
number-align: center,
header: locate(loc => {
if loc.page() == 1 {
return
}
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
font: "New Computer Modern",
)[
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
#h(1fr)
*#title*
]]
}),
paper: paper-size,
// The margins depend on the paper size.
margin: (
left: (86pt / 216mm) * 100%,
right: (86pt / 216mm) * 100%,
),
)
set heading(numbering: "1.")
show heading: it => {
set text(font: "Libertinus Serif")
set par(first-line-indent: 0em)
if it.numbering != none {
text(rgb("#2196F3"), weight: 500)[#sym.section]
text(rgb("#2196F3"))[#counter(heading).display() ]
}
it.body
}
set text(font: "New Computer Modern", lang: "en")
show math.equation: set text(weight: 400)
// Title row.
align(center)[
#set text(font: "Libertinus Serif")
#block(text(weight: 700, 26pt, title))
#v(1.8em, weak: true)
#if author != none [#text(16pt)[by #author]]
#v(1.2em, weak: true)
#if subtitle != none [#text(12pt, weight: 500)[#(
datetime.today().display("[day] [month repr:long] [year]")
)]]
]
if abstract != none [
#v(2em)
#set text(font: "Libertinus Serif")
#pad(x: 14%, abstract)
#v(1em)
]
set outline(fill: repeat[~.], indent: 1em)
show outline: set heading(numbering: none)
show outline: set par(first-line-indent: 0em)
show outline.entry.where(level: 1): it => {
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
}
show outline.entry: it => {
h(1em)
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
}
// Main body.
set par(
justify: true,
first-line-indent: 1em,
)
body
// Display the bibliography, if any is given.
if bibliography != none {
show std.bibliography: set text(footnote-size)
show std.bibliography: set block(above: 11pt)
show std.bibliography: pad.with(x: 0.5pt)
bibliography
}
}
#let thmtitle(t, color: rgb("#000000")) = {
return text(
font: "Libertinus Serif",
weight: "semibold",
fill: color,
)[#t]
}
#let thmname(t, color: rgb("#000000")) = {
return text(font: "Libertinus Serif", fill: color)[(#t)]
}
#let thmtext(t, color: rgb("#000000")) = {
let a = t.children
if (a.at(0) == [ ]) {
a.remove(0)
}
t = a.join()
return text(font: "New Computer Modern", fill: color)[#t]
}
#let thmbase(
identifier,
head,
..blockargs,
supplement: auto,
padding: (top: 0.5em, bottom: 0.5em),
namefmt: x => [(#x)],
titlefmt: strong,
bodyfmt: x => x,
separator: [#h(0.1em).#h(0.2em) \ ],
base: "heading",
base_level: none,
) = {
if supplement == auto {
supplement = head
}
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
if not name == none {
name = [ #namefmt(name)]
} else {
name = []
}
if title == auto {
title = head
}
if not number == none {
title += " " + number
}
title = titlefmt(title)
body = bodyfmt(body)
pad(
..padding,
showybox(
width: 100%,
radius: 0.3em,
breakable: true,
padding: (top: 0em, bottom: 0em),
..blockargs.named(),
..blockargs_individual.named(),
[#title#name#titlefmt(separator)#body],
),
)
}
let auxthmenv = thmenv(
identifier,
base,
base_level,
boxfmt,
).with(supplement: supplement)
return auxthmenv.with(numbering: "1.1")
}
#let styled-thmbase = thmbase.with(
titlefmt: thmtitle,
namefmt: thmname,
bodyfmt: thmtext,
)
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
titlefmt: thmtitle.with(color: color.darken(30%)),
bodyfmt: thmtext.with(color: color.darken(70%)),
namefmt: thmname.with(color: color.darken(30%)),
frame: (
body-color: color.lighten(92%),
border-color: color.darken(10%),
thickness: 1.5pt,
inset: 1.2em,
radius: 0.3em,
),
..builderargs,
)
#let builder-thmline(
color: rgb("#000000"),
..builderargs,
) = styled-thmbase.with(
titlefmt: thmtitle.with(color: color.darken(30%)),
bodyfmt: thmtext.with(color: color.darken(70%)),
namefmt: thmname.with(color: color.darken(30%)),
frame: (
body-color: color.lighten(92%),
border-color: color.darken(10%),
thickness: (left: 2pt),
inset: 1.2em,
radius: 0em,
),
..builderargs,
)
#let problem-style = builder-thmbox(
color: colors.at(11),
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
)
#let problem = problem-style("problem", "Problem")
#let theorem-style = builder-thmbox(
color: colors.at(6),
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
)
#let theorem = theorem-style("theorem", "Theorem")
#let lemma = theorem-style("lemma", "Lemma")
#let corollary = theorem-style("corollary", "Corollary")
#let definition-style = builder-thmline(color: colors.at(8))
#let definition = definition-style("definition", "Definition")
#let proposition = definition-style("proposition", "Proposition")
#let remark = definition-style("remark", "Remark")
#let observation = definition-style("observation", "Observation")
#let example-style = builder-thmline(color: colors.at(16))
#let example = example-style("example", "Example").with(numbering: none)
#let proof(body, name: none) = {
thmtitle[Proof]
if name != none {
[ #thmname[#name]]
}
thmtitle[.]
body
h(1fr)
$square$
}

View file

@ -0,0 +1,121 @@
#import "./dvd.typ": *
#show: dvdtyp.with(
title: "Probability and Statistics",
author: "Youwen Wu",
)
#outline()
= Lecture 1
== Preliminaries
#definition("Statistics")[
The science dealing with the collection, summarization, analysis, and
interpretation of data.
]
== Set theory for dummies
A terse introduction to elementary set theory and the basic operations upon
them.
#definition[Set][
A collection of elements.
]
#example[Examples of sets][
+ Trivial set: ${1}$
+ Empty set: $emptyset$
+ $A = {a,b,c}$
]
We can construct sets using set-builder notation (also sometimes called set comprehension).
$ {"expression with" x | "conditions on" x} $
#example("Set builder notation")[
+ The set of all even integers: ${2n | n in ZZ}$
+ The set of all perfect squares in $RR$: ${x^2 | x in NN}$
]
We also have notation for working with sets:
With arbitrary sets $A$, $B$, $Omega$:
+ $a in A$ ($a$ is a member of the set $A$)
+ $a in.not A$ ($a$ is not a member of the set $A$)
+ $A subset.eq Omega$ (Set theory: $A$ is a subset of $Omega$) (Stats: $A$ is a sample space in $Omega$)
+ $A subset Omega$ (Proper subset: $A != Omega$)
+ $A^c$ or $A'$ (read "complement of $A$")
+ $A union B$ (Union of $A$ and $B$. Gives a set with both the elements of $A$ and $B$)
+ $A sect B$ (Intersection of $A$ and $B$. Gives a set consisting of the elements in *both* $A$ and $B$)
+ $A \\ B$ (Set difference. The set of all elements of $A$ that are not also in $B$)
+ $A times B$ (Cartesian product. Ordered pairs of $(a,b)$ $forall a in A$, $forall b in B$)
We can also write a few of these operations precisely as set comprehensions.
+ $A subset Omega => A = {a | a in Omega, forall a in A}$
+ $A union B = {x | x in A or x in B}$ (here $or$ is the logical OR)
+ $A sect B = {x | x in A and x in B}$ (here $and$ is the logical AND)
+ $A \\ B = {a | a in A and a in.not B}$
+ $A times B = {(a,b) | forall a in A, forall b in B}$
Convince yourself that these definitions are equivalent to the previous ones.
#example[The real plane][
The real plane $RR^2$ can be defined as a Cartesian product of $RR$ with itself.
$ RR^2 = RR times RR $
]
Check your intuition that this makes sense. Why do you think $RR^n$ was chosen as the notation for $n$ dimensional spaces in $RR$?
#remark[Disjoint sets][
If $A sect B$ = $emptyset$, then we say that $A$ and $B$ are *disjoint*.
]
#theorem[Properties of set operations][
+ DeMorgan's Laws:
+ $(A union B)' = A' sect B'$
+ $(A sect B)' = A' union B'$
]
#remark[Generalized DeMorgan's][
+ $(union_i A_i)' = sect_i A_i'$
+ $(sect_i A_i)' = union_i A_i'$
]
=== Sizes of infinity
#definition("Cardinality")[
Let $N(A)$ be the number of elements in $A$. $N(A)$ is called the _cardinality_ of $A$.
]
Sets are either finite or infinite. Finite sets have a fixed finite cardinality.
Infinite sets can be either _countably infinite_ or _uncountably infinite_.
When a set is countably infinite, its cardinality is $aleph_0$ (here $aleph$ is
the Hebrew letter aleph and read "aleph null").
When a set is uncountably infinite, its cardinality is greater than $aleph_0$.
#example("Countable sets")[
+ The natural numbers $NN$.
+ The rationals $QQ$.
+ The natural numbers $ZZ$.
]
#example("Uncountable sets")[
+ The real numbers $RR$.
+ The real numbers in the interval $[0,1]$.
]
#remark[Bijection][
If a set is countably infinite, then it has a bijection with $ZZ$. This means
every set with cardinality $aleph_0$ has a bijection to $ZZ$.
]