auto-update(nvim): 2025-01-06 15:32:17
This commit is contained in:
parent
a3c734b777
commit
735ab2fc25
3 changed files with 408 additions and 3 deletions
|
@ -45,10 +45,12 @@
|
|||
if loc.page() == 1 {
|
||||
return
|
||||
}
|
||||
box(stroke: (bottom: 0.7pt), inset: 0.2em)[#text(
|
||||
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
|
||||
font: "New Computer Modern",
|
||||
)[
|
||||
#author #h(1fr)#title
|
||||
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
|
||||
#h(1fr)
|
||||
*#title*
|
||||
]]
|
||||
}),
|
||||
paper: paper-size,
|
||||
|
@ -86,7 +88,7 @@
|
|||
#if author != none [#text(16pt)[by #author]]
|
||||
#v(1.2em, weak: true)
|
||||
#if subtitle != none [#text(12pt, weight: 500)[#(
|
||||
datetime.today().display("[month repr:long] [day], [year]")
|
||||
datetime.today().display("[day] [month repr:long] [year]")
|
||||
)]]
|
||||
|
||||
]
|
||||
|
|
282
documents/by-course/pstat-120a/course-notes/dvd.typ
Normal file
282
documents/by-course/pstat-120a/course-notes/dvd.typ
Normal file
|
@ -0,0 +1,282 @@
|
|||
#import "@preview/ctheorems:1.1.2": *
|
||||
#import "@preview/showybox:2.0.1": showybox
|
||||
|
||||
#let colors = (
|
||||
rgb("#9E9E9E"),
|
||||
rgb("#F44336"),
|
||||
rgb("#E91E63"),
|
||||
rgb("#9C27B0"),
|
||||
rgb("#673AB7"),
|
||||
rgb("#3F51B5"),
|
||||
rgb("#2196F3"),
|
||||
rgb("#03A9F4"),
|
||||
rgb("#00BCD4"),
|
||||
rgb("#009688"),
|
||||
rgb("#4CAF50"),
|
||||
rgb("#8BC34A"),
|
||||
rgb("#CDDC39"),
|
||||
rgb("#FFEB3B"),
|
||||
rgb("#FFC107"),
|
||||
rgb("#FF9800"),
|
||||
rgb("#FF5722"),
|
||||
rgb("#795548"),
|
||||
rgb("#9E9E9E"),
|
||||
)
|
||||
|
||||
#let dvdtyp(
|
||||
title: "",
|
||||
subtitle: "",
|
||||
author: "",
|
||||
abstract: none,
|
||||
bibliography: none,
|
||||
paper-size: "a4",
|
||||
body,
|
||||
) = {
|
||||
set document(title: title, author: author)
|
||||
|
||||
set std.bibliography(style: "springer-mathphys", title: [References])
|
||||
|
||||
show: thmrules
|
||||
|
||||
set page(
|
||||
numbering: "1",
|
||||
number-align: center,
|
||||
header: locate(loc => {
|
||||
if loc.page() == 1 {
|
||||
return
|
||||
}
|
||||
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
|
||||
font: "New Computer Modern",
|
||||
)[
|
||||
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
|
||||
#h(1fr)
|
||||
*#title*
|
||||
]]
|
||||
}),
|
||||
paper: paper-size,
|
||||
// The margins depend on the paper size.
|
||||
margin: (
|
||||
left: (86pt / 216mm) * 100%,
|
||||
right: (86pt / 216mm) * 100%,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
set heading(numbering: "1.")
|
||||
show heading: it => {
|
||||
set text(font: "Libertinus Serif")
|
||||
set par(first-line-indent: 0em)
|
||||
|
||||
if it.numbering != none {
|
||||
text(rgb("#2196F3"), weight: 500)[#sym.section]
|
||||
|
||||
text(rgb("#2196F3"))[#counter(heading).display() ]
|
||||
}
|
||||
it.body
|
||||
}
|
||||
|
||||
set text(font: "New Computer Modern", lang: "en")
|
||||
|
||||
show math.equation: set text(weight: 400)
|
||||
|
||||
|
||||
// Title row.
|
||||
align(center)[
|
||||
#set text(font: "Libertinus Serif")
|
||||
#block(text(weight: 700, 26pt, title))
|
||||
#v(1.8em, weak: true)
|
||||
#if author != none [#text(16pt)[by #author]]
|
||||
#v(1.2em, weak: true)
|
||||
#if subtitle != none [#text(12pt, weight: 500)[#(
|
||||
datetime.today().display("[day] [month repr:long] [year]")
|
||||
)]]
|
||||
|
||||
]
|
||||
|
||||
if abstract != none [
|
||||
#v(2em)
|
||||
#set text(font: "Libertinus Serif")
|
||||
#pad(x: 14%, abstract)
|
||||
#v(1em)
|
||||
]
|
||||
|
||||
set outline(fill: repeat[~.], indent: 1em)
|
||||
|
||||
show outline: set heading(numbering: none)
|
||||
show outline: set par(first-line-indent: 0em)
|
||||
|
||||
show outline.entry.where(level: 1): it => {
|
||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
|
||||
}
|
||||
show outline.entry: it => {
|
||||
h(1em)
|
||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
|
||||
}
|
||||
|
||||
|
||||
// Main body.
|
||||
set par(
|
||||
justify: true,
|
||||
first-line-indent: 1em,
|
||||
)
|
||||
|
||||
body
|
||||
|
||||
// Display the bibliography, if any is given.
|
||||
if bibliography != none {
|
||||
show std.bibliography: set text(footnote-size)
|
||||
show std.bibliography: set block(above: 11pt)
|
||||
show std.bibliography: pad.with(x: 0.5pt)
|
||||
bibliography
|
||||
}
|
||||
}
|
||||
|
||||
#let thmtitle(t, color: rgb("#000000")) = {
|
||||
return text(
|
||||
font: "Libertinus Serif",
|
||||
weight: "semibold",
|
||||
fill: color,
|
||||
)[#t]
|
||||
}
|
||||
#let thmname(t, color: rgb("#000000")) = {
|
||||
return text(font: "Libertinus Serif", fill: color)[(#t)]
|
||||
}
|
||||
|
||||
#let thmtext(t, color: rgb("#000000")) = {
|
||||
let a = t.children
|
||||
if (a.at(0) == [ ]) {
|
||||
a.remove(0)
|
||||
}
|
||||
t = a.join()
|
||||
|
||||
return text(font: "New Computer Modern", fill: color)[#t]
|
||||
}
|
||||
|
||||
#let thmbase(
|
||||
identifier,
|
||||
head,
|
||||
..blockargs,
|
||||
supplement: auto,
|
||||
padding: (top: 0.5em, bottom: 0.5em),
|
||||
namefmt: x => [(#x)],
|
||||
titlefmt: strong,
|
||||
bodyfmt: x => x,
|
||||
separator: [#h(0.1em).#h(0.2em) \ ],
|
||||
base: "heading",
|
||||
base_level: none,
|
||||
) = {
|
||||
if supplement == auto {
|
||||
supplement = head
|
||||
}
|
||||
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
|
||||
if not name == none {
|
||||
name = [ #namefmt(name)]
|
||||
} else {
|
||||
name = []
|
||||
}
|
||||
if title == auto {
|
||||
title = head
|
||||
}
|
||||
if not number == none {
|
||||
title += " " + number
|
||||
}
|
||||
title = titlefmt(title)
|
||||
body = bodyfmt(body)
|
||||
pad(
|
||||
..padding,
|
||||
showybox(
|
||||
width: 100%,
|
||||
radius: 0.3em,
|
||||
breakable: true,
|
||||
padding: (top: 0em, bottom: 0em),
|
||||
..blockargs.named(),
|
||||
..blockargs_individual.named(),
|
||||
[#title#name#titlefmt(separator)#body],
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
let auxthmenv = thmenv(
|
||||
identifier,
|
||||
base,
|
||||
base_level,
|
||||
boxfmt,
|
||||
).with(supplement: supplement)
|
||||
|
||||
return auxthmenv.with(numbering: "1.1")
|
||||
}
|
||||
|
||||
#let styled-thmbase = thmbase.with(
|
||||
titlefmt: thmtitle,
|
||||
namefmt: thmname,
|
||||
bodyfmt: thmtext,
|
||||
)
|
||||
|
||||
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
|
||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
||||
namefmt: thmname.with(color: color.darken(30%)),
|
||||
frame: (
|
||||
body-color: color.lighten(92%),
|
||||
border-color: color.darken(10%),
|
||||
thickness: 1.5pt,
|
||||
inset: 1.2em,
|
||||
radius: 0.3em,
|
||||
),
|
||||
..builderargs,
|
||||
)
|
||||
|
||||
#let builder-thmline(
|
||||
color: rgb("#000000"),
|
||||
..builderargs,
|
||||
) = styled-thmbase.with(
|
||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
||||
namefmt: thmname.with(color: color.darken(30%)),
|
||||
frame: (
|
||||
body-color: color.lighten(92%),
|
||||
border-color: color.darken(10%),
|
||||
thickness: (left: 2pt),
|
||||
inset: 1.2em,
|
||||
radius: 0em,
|
||||
),
|
||||
..builderargs,
|
||||
)
|
||||
|
||||
#let problem-style = builder-thmbox(
|
||||
color: colors.at(11),
|
||||
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
||||
)
|
||||
|
||||
#let problem = problem-style("problem", "Problem")
|
||||
|
||||
#let theorem-style = builder-thmbox(
|
||||
color: colors.at(6),
|
||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
||||
)
|
||||
|
||||
#let theorem = theorem-style("theorem", "Theorem")
|
||||
#let lemma = theorem-style("lemma", "Lemma")
|
||||
#let corollary = theorem-style("corollary", "Corollary")
|
||||
|
||||
#let definition-style = builder-thmline(color: colors.at(8))
|
||||
|
||||
#let definition = definition-style("definition", "Definition")
|
||||
#let proposition = definition-style("proposition", "Proposition")
|
||||
#let remark = definition-style("remark", "Remark")
|
||||
#let observation = definition-style("observation", "Observation")
|
||||
|
||||
#let example-style = builder-thmline(color: colors.at(16))
|
||||
|
||||
#let example = example-style("example", "Example").with(numbering: none)
|
||||
|
||||
#let proof(body, name: none) = {
|
||||
thmtitle[Proof]
|
||||
if name != none {
|
||||
[ #thmname[#name]]
|
||||
}
|
||||
thmtitle[.]
|
||||
body
|
||||
h(1fr)
|
||||
$square$
|
||||
}
|
121
documents/by-course/pstat-120a/course-notes/main.typ
Normal file
121
documents/by-course/pstat-120a/course-notes/main.typ
Normal file
|
@ -0,0 +1,121 @@
|
|||
#import "./dvd.typ": *
|
||||
|
||||
#show: dvdtyp.with(
|
||||
title: "Probability and Statistics",
|
||||
author: "Youwen Wu",
|
||||
)
|
||||
|
||||
#outline()
|
||||
|
||||
= Lecture 1
|
||||
|
||||
== Preliminaries
|
||||
|
||||
#definition("Statistics")[
|
||||
The science dealing with the collection, summarization, analysis, and
|
||||
interpretation of data.
|
||||
]
|
||||
|
||||
== Set theory for dummies
|
||||
|
||||
A terse introduction to elementary set theory and the basic operations upon
|
||||
them.
|
||||
|
||||
#definition[Set][
|
||||
A collection of elements.
|
||||
]
|
||||
|
||||
#example[Examples of sets][
|
||||
+ Trivial set: ${1}$
|
||||
+ Empty set: $emptyset$
|
||||
+ $A = {a,b,c}$
|
||||
]
|
||||
|
||||
We can construct sets using set-builder notation (also sometimes called set comprehension).
|
||||
|
||||
$ {"expression with" x | "conditions on" x} $
|
||||
|
||||
#example("Set builder notation")[
|
||||
+ The set of all even integers: ${2n | n in ZZ}$
|
||||
+ The set of all perfect squares in $RR$: ${x^2 | x in NN}$
|
||||
]
|
||||
|
||||
We also have notation for working with sets:
|
||||
|
||||
With arbitrary sets $A$, $B$, $Omega$:
|
||||
|
||||
+ $a in A$ ($a$ is a member of the set $A$)
|
||||
+ $a in.not A$ ($a$ is not a member of the set $A$)
|
||||
+ $A subset.eq Omega$ (Set theory: $A$ is a subset of $Omega$) (Stats: $A$ is a sample space in $Omega$)
|
||||
+ $A subset Omega$ (Proper subset: $A != Omega$)
|
||||
+ $A^c$ or $A'$ (read "complement of $A$")
|
||||
+ $A union B$ (Union of $A$ and $B$. Gives a set with both the elements of $A$ and $B$)
|
||||
+ $A sect B$ (Intersection of $A$ and $B$. Gives a set consisting of the elements in *both* $A$ and $B$)
|
||||
+ $A \\ B$ (Set difference. The set of all elements of $A$ that are not also in $B$)
|
||||
+ $A times B$ (Cartesian product. Ordered pairs of $(a,b)$ $forall a in A$, $forall b in B$)
|
||||
|
||||
We can also write a few of these operations precisely as set comprehensions.
|
||||
|
||||
+ $A subset Omega => A = {a | a in Omega, forall a in A}$
|
||||
+ $A union B = {x | x in A or x in B}$ (here $or$ is the logical OR)
|
||||
+ $A sect B = {x | x in A and x in B}$ (here $and$ is the logical AND)
|
||||
+ $A \\ B = {a | a in A and a in.not B}$
|
||||
+ $A times B = {(a,b) | forall a in A, forall b in B}$
|
||||
|
||||
Convince yourself that these definitions are equivalent to the previous ones.
|
||||
|
||||
#example[The real plane][
|
||||
The real plane $RR^2$ can be defined as a Cartesian product of $RR$ with itself.
|
||||
|
||||
$ RR^2 = RR times RR $
|
||||
]
|
||||
|
||||
Check your intuition that this makes sense. Why do you think $RR^n$ was chosen as the notation for $n$ dimensional spaces in $RR$?
|
||||
|
||||
#remark[Disjoint sets][
|
||||
If $A sect B$ = $emptyset$, then we say that $A$ and $B$ are *disjoint*.
|
||||
]
|
||||
|
||||
#theorem[Properties of set operations][
|
||||
+ DeMorgan's Laws:
|
||||
+ $(A union B)' = A' sect B'$
|
||||
+ $(A sect B)' = A' union B'$
|
||||
]
|
||||
|
||||
#remark[Generalized DeMorgan's][
|
||||
+ $(union_i A_i)' = sect_i A_i'$
|
||||
+ $(sect_i A_i)' = union_i A_i'$
|
||||
]
|
||||
|
||||
=== Sizes of infinity
|
||||
|
||||
#definition("Cardinality")[
|
||||
Let $N(A)$ be the number of elements in $A$. $N(A)$ is called the _cardinality_ of $A$.
|
||||
]
|
||||
|
||||
Sets are either finite or infinite. Finite sets have a fixed finite cardinality.
|
||||
|
||||
Infinite sets can be either _countably infinite_ or _uncountably infinite_.
|
||||
|
||||
When a set is countably infinite, its cardinality is $aleph_0$ (here $aleph$ is
|
||||
the Hebrew letter aleph and read "aleph null").
|
||||
|
||||
When a set is uncountably infinite, its cardinality is greater than $aleph_0$.
|
||||
|
||||
#example("Countable sets")[
|
||||
+ The natural numbers $NN$.
|
||||
+ The rationals $QQ$.
|
||||
+ The natural numbers $ZZ$.
|
||||
]
|
||||
|
||||
#example("Uncountable sets")[
|
||||
+ The real numbers $RR$.
|
||||
+ The real numbers in the interval $[0,1]$.
|
||||
]
|
||||
|
||||
#remark[Bijection][
|
||||
If a set is countably infinite, then it has a bijection with $ZZ$. This means
|
||||
every set with cardinality $aleph_0$ has a bijection to $ZZ$.
|
||||
]
|
||||
|
||||
|
Loading…
Reference in a new issue