diff --git a/documents/by-course/pstat-120a/course-notes/main.typ b/documents/by-course/pstat-120a/course-notes/main.typ index 156bfed..126e0d1 100644 --- a/documents/by-course/pstat-120a/course-notes/main.typ +++ b/documents/by-course/pstat-120a/course-notes/main.typ @@ -1665,6 +1665,61 @@ $F_z(x)$, we use the special $phi(x)$ and $Phi(x)$. - use the standard normal probability table in the textbook ] +To evaluate negative values, we can use the symmetry of the normal distribution +to apply the following identity: + +$ + Phi(-x) = 1 - Phi(x) +$ + +== General normal distributions + +The general family of normal distributions is obtained by linear or affine +transformations of $Z$. Let $mu$ be real, and $sigma > 0$, then + +$ + X = sigma Z + mu +$ +is also a normally distributed random variable with parameters $(mu, sigma^2)$. +The CDF of $X$ in terms of $Phi(dot)$ can be expressed as + +$ + F_X (x) &= P(X <= x) \ + &= P(sigma Z + mu <= x) \ + &= P(Z <= (x - mu) / sigma) \ + &= Phi((x-mu)/sigma) +$ + +Also, + +$ + f(x) = F'(x) = dif / (dif x) [Phi((x-u)/sigma)] = 1 / sigma phi((x-u)/sigma) = 1 / sqrt(2 pi sigma^2) e^(-((x-mu)^2) / (2sigma^2)) +$ + +#definition[ + Let $mu$ be real and $sigma > 0$. A random variable $X$ has the _normal distribution_ with mean $mu$ and variance $sigma^2$ if $X$ has density function + + $ + f(x) = 1 / sqrt(2 pi sigma^2) e^(-((x-mu)^2) / (2sigma^2)) + $ + + on the real line. Abbreviate this by $X ~ N(mu, sigma^2)$. +] + +#fact[ + Let $X ~ N(mu, sigma^2)$ and $Y = a X + b$. Then + $ + Y ~ N(a mu + b, a^2 sigma^2) + $ + + That is, $Y$ is normally distributed with parameters $(a mu + b, a^2 sigma^2)$. + In particular, + $ + Z = (X - mu) / sigma ~ N(0,1) + $ + is a standard normal variable. +] + = Lecture #datetime(day: 11, year: 2025, month: 2).display() == Expectation