auto-update(nvim): 2025-02-19 16:07:50
This commit is contained in:
parent
69878532bb
commit
8ade952fdf
1 changed files with 283 additions and 3 deletions
|
@ -1,5 +1,4 @@
|
|||
#import "@youwen/zen:0.1.0": *
|
||||
#import "@preview/ctheorems:1.1.3": *
|
||||
|
||||
#show: zen.with(
|
||||
title: "PSTAT120A Course Notes",
|
||||
|
@ -1993,8 +1992,8 @@ Previously we discussed "raw moments." Be careful not to confuse them with
|
|||
_central moments_.
|
||||
|
||||
#fact[
|
||||
The $n^"th"$ central moment of a discrete random variable $X$ with p.m.f. p_X
|
||||
(x) is the expected value of the difference about the mean raised to the
|
||||
The $n^"th"$ central moment of a discrete random variable $X$ with p.m.f. $p_X
|
||||
(x)$ is the expected value of the difference about the mean raised to the
|
||||
$n^"th"$ power
|
||||
|
||||
$
|
||||
|
@ -2016,6 +2015,8 @@ $
|
|||
mu'_2 = E[(X-mu)^2] = sigma^2_X = "Var"(X)
|
||||
$
|
||||
|
||||
Effectively we're centering our distribution first.
|
||||
|
||||
#example[
|
||||
Let $Y$ be a uniformly chosen integer from ${0,1,2,...,m}$. Find the first and
|
||||
second moment of $Y$.
|
||||
|
@ -2103,3 +2104,282 @@ indicator of where the center of the distribution lies.
|
|||
The median reflects the fact that 90% of the values and probability is in the
|
||||
range $1,2,...,9$ while the mean is heavily influenced by the $-100$ value.
|
||||
]
|
||||
|
||||
= President's Day lecture
|
||||
|
||||
...
|
||||
|
||||
= Lecture #datetime(day: 19, month: 2, year: 2025).display()
|
||||
|
||||
== Moment generating functions
|
||||
|
||||
Like the CDF, the moment generating function also completely characterizes the
|
||||
distribution. That is, if you can find the MGF, it tells you all of the
|
||||
information about the distribution. So it is an alternative way to characterize
|
||||
a random variable.
|
||||
|
||||
They are "easy" to use for finding the distributions of:
|
||||
|
||||
- sums of independent random variables
|
||||
- the distribution of the limit of a sequence of random variables
|
||||
|
||||
#definition[
|
||||
Let $X$ be a random variable with all finite moments
|
||||
$
|
||||
E[X^k] = mu_k, k = 1,2,...
|
||||
$
|
||||
Then the *moment generating function* of a random variable $X$ is defined by
|
||||
$M_x(t) = E[e^(t x)]$, for the real variable $t$.
|
||||
]
|
||||
|
||||
All of the moments must be defined for the MGF to exist. The MGF looks like
|
||||
|
||||
$
|
||||
sum_("all" x) e^(t x) p(x)
|
||||
$
|
||||
in the discrete case, and
|
||||
$
|
||||
integral^infinity_(-infinity) e^(t x) f(x) dif x
|
||||
$
|
||||
in the continuous case.
|
||||
|
||||
#proposition[
|
||||
It holds that the $n^"th"$ derivative of $M$ evaluated at 0 gives the
|
||||
$n^"th"$ moment.
|
||||
$
|
||||
M_x^((n)) (0) = E[X^n]
|
||||
$
|
||||
]
|
||||
|
||||
#proof[
|
||||
$
|
||||
M_X (t) &equiv E[e^(t x)] = E[1 + (t X) + (t X^2) / 2! + dots.c] \
|
||||
&= E[1] + E[t X] + E[(t^2 X^2) / 2!] + dots.c \
|
||||
&= E[1] + t E[X] + t^2 / 2! E[X^2] + dots.c \
|
||||
&= 1 + t / 1! mu_1 + t^2 / 2! mu_2 + dots.c
|
||||
$
|
||||
|
||||
The coefficient of $t^k/k!$ in the Taylor series expansion of $M_X (t)$ is the
|
||||
$k^"th"$ moment. So an alternative way to get $mu_k$ is
|
||||
|
||||
$
|
||||
mu_k = lr(((dif^k M(t))/(dif t^k)) |)_(t=0) = "coefficient of" t^k / k!
|
||||
$
|
||||
]
|
||||
|
||||
#example[Binomial][
|
||||
|
||||
Let $X ~ "Bin"(n,p)$. Then the MGF of $X$ is given by
|
||||
|
||||
$
|
||||
sum_(k=0)^n e^(t k) vec(n,k) p^k q^(n-k) = sum_(k=0)^n vec(n,k) underbrace(p (e^t)^k,a) underbrace(q^(n-k), b)
|
||||
$
|
||||
|
||||
Applying the binomial theorem
|
||||
|
||||
$
|
||||
(a + b)^n = sum_(k=0)^n vec(n,k) a^k b^(n-k)
|
||||
$
|
||||
|
||||
So we have
|
||||
|
||||
$
|
||||
(q + p e^t)^n
|
||||
$
|
||||
|
||||
Let's find the first moment
|
||||
|
||||
$
|
||||
mu_1 = lr((dif M(t))/(dif t) |)_(t=0) \
|
||||
= n p
|
||||
$
|
||||
|
||||
The second moment:
|
||||
|
||||
$
|
||||
mu_2 = lr((dif^2 M(t))/(dif t^2) |)_(t=0) \
|
||||
= n(n-1) p^2 + n p
|
||||
$
|
||||
|
||||
For example, if $X$ has MGF $(1/3 + 2/3 e^t)^10$, then $X ~ "Bin"(10,2/3)$.
|
||||
]
|
||||
|
||||
#example[Poisson][
|
||||
Let $X ~ "Pois"(lambda)$. Then the MGF of $X$ is given
|
||||
$
|
||||
M_X (t) = E[e^(t X)] \
|
||||
sum^infinity_(x=0) e^(t x) e^(-lambda) lambda^x / x! \
|
||||
e^(-lambda) sum^infinity_(x=0) e^(t x)lambda^x / x!
|
||||
$
|
||||
Note: $e^a = sum_(x=0) ^infinity a^x / x!$
|
||||
$
|
||||
= e^(-lambda) e^(lambda e^t) \
|
||||
= e^(-lambda (1 - e^t))
|
||||
$
|
||||
Then, the first moment can be found by,
|
||||
$
|
||||
mu_1 = lr(e^(-lambda (1 - e^t)) (-lambda) (-e^t) |)_(t=0) = lambda
|
||||
$
|
||||
]
|
||||
|
||||
#example[Exponential][
|
||||
Let $X ~"Exp"(lambda)$ with PDF
|
||||
$
|
||||
f(x) = cases(lambda e^(-lambda x) &"for" x > 0, 0 &"otherwise")
|
||||
$
|
||||
Find the MGF of $X$
|
||||
|
||||
$
|
||||
M_X (t) &= integral^infinity_(-infinity) e^(t x) dot lambda e^(-lambda x) dif x \
|
||||
&= lambda integral_0^infinity e^((t-lambda) x) dif x \
|
||||
&= lambda lim_(b->infinity) integral_0^b e^((t - lambda) x) dif x \
|
||||
$
|
||||
This integral depends on $t$, so we should consider three cases. If $t =
|
||||
lambda$, then the integral diverges.
|
||||
|
||||
If $t != lambda$,
|
||||
$
|
||||
E[e^(t X)] = lambda lim_(b->infinity) integral_0^b e^((t - lambda) x) dif x = lambda lim_(b -> infinity) [(e^((t - lambda) x) - 1) / (t - lambda)]^(x=b)_(x=0) \
|
||||
lambda lim_(b -> infinity) (e^((t - lambda) b) - 1) / (t - lambda) = cases(infinity &"if" t > lambda, lambda/(lambda - t) &"if" t < lambda)
|
||||
$
|
||||
Combining with the $lambda = t$ case,
|
||||
|
||||
$
|
||||
lambda lim_(b -> infinity) (e^((t - lambda) b) - 1) / (t - lambda) = cases(infinity &"if" t >= lambda, lambda/(lambda - t) &"if" t < lambda)
|
||||
$
|
||||
]
|
||||
|
||||
#example[Alternative parameterization of the exponential][
|
||||
Consider $X ~ "Exp"(beta)$ with PDF
|
||||
$
|
||||
f(x) = cases(1/beta e^(-x/beta) &"for" x > 0, 0 &"otherwise")
|
||||
$
|
||||
and proceed as usual
|
||||
$
|
||||
M_X (t) = integral_(-infinity)^infinity e^(t x) dot 1 / beta e^(-x / beta) dif x = 1 / beta lim_(b-infinity) [e^((t - 1 / beta) x) / (t - 1 / beta)]_(x=0)^(x=b) = 1 / (1 - beta t)
|
||||
$
|
||||
So it's a geometric series
|
||||
$
|
||||
1 + beta t + (beta t)^2 + dots.c \
|
||||
$
|
||||
Multiply each $n^"th"$ term by $n/n!$
|
||||
$
|
||||
= 1 + beta t + 2 beta^2 (t^2 / 2!) + 6 beta^3 (t^3 / 3!) + dots.c
|
||||
$
|
||||
Recall that the coefficient of each $r^k/k! = mu)k$. So
|
||||
- $E[x] = beta$
|
||||
- $E[X^2] = 2 beta^2$
|
||||
- $E[X^3] = 6 beta^3$
|
||||
$
|
||||
"Var"(X) = E[X^2] - (E[X])^2 = beta^2
|
||||
$
|
||||
]
|
||||
|
||||
#example[Uniform on $[0,1]$][
|
||||
Let $X ~ U(0,1)$, then
|
||||
$
|
||||
M_X (t) &= integral_0^1 e^(t x) dot 1 dif x \
|
||||
&= lr(e^(t x)/t |)_(x=0)^(x=1) = (e^t - 1) / t \
|
||||
&= (cancel(1) + t^2 / 2! + dots.c - cancel(1)) / t \
|
||||
&= 1 + t^2 / 2! + t^2 / 3! + t^3 / 4! + dots.c \
|
||||
&= 1 + 1 / 2 t + 1 / 3 (t^2 / 2!) + 1 / 4(t^3 / 3!) + dots.c
|
||||
$
|
||||
So
|
||||
- $E[X] = 1 / 2$
|
||||
- $E[X^2] = 1 / 3$
|
||||
- $E[X^n] = 1 / (n + 1)$
|
||||
]
|
||||
|
||||
== Properties of the MGF
|
||||
|
||||
#definition[
|
||||
Random variables $X$ and $Y$ are equal in distribution if $P(X in B) = P(Y in
|
||||
B)$ for all all subsets $B$ of $RR$.
|
||||
]
|
||||
|
||||
#abuse[
|
||||
Abbreviate this by $X eq.delta Y$
|
||||
]
|
||||
|
||||
#example[Normal distribution][
|
||||
Let $Z ~ N(0,1)$. Then
|
||||
$
|
||||
E[e^(t Z)] = 1 / sqrt(2 pi) integral^infinity_(-infinity) e^(-1 / 2 z^2 + t z -1 / 2 t^2 + 1 / 2 t^2) dif z \
|
||||
= e^(t^2 / 2) 1 / sqrt(2 pi) = integral_(-infinity)^infinity e^(-1 / 2 (z-t)^2) dif z = e^(t^2 / 2)
|
||||
$
|
||||
|
||||
To get the MGF for a general normal RV, $X ~ N(mu, sigma^2)$, then
|
||||
$
|
||||
X = sigma Z + mu
|
||||
$
|
||||
we get
|
||||
$
|
||||
E[e^(t (sigma Z + mu))] = e^(t mu) E[e^(t sigma Z)] = e^(t mu) dot e^((t^2 sigma^2) / 2) = exp(mu t + (sigma^2 t^2) / 2)
|
||||
$
|
||||
]
|
||||
|
||||
== Joint distributions of RV
|
||||
|
||||
Looking at multiple random variables jointly. If $X$ and $Y$ are both random
|
||||
variables defined on $Omega$< treat them as coordinates of a 2 dimensional
|
||||
random vector. It's a vector valued function on $Omega$,
|
||||
|
||||
$
|
||||
Omega -> RR^2
|
||||
$
|
||||
|
||||
Valid both discretely and continuously
|
||||
|
||||
#example[
|
||||
$
|
||||
(X,Y)
|
||||
$
|
||||
1. Poker hand: $X$ is num of face cards, $Y$ is num of red cards.
|
||||
2. Demographic info: $X$ = height, $Y$ = weight
|
||||
]
|
||||
|
||||
In general, with $n$ random variables jointly where
|
||||
$
|
||||
X_1, X_2, ..., X_n
|
||||
$
|
||||
defined on $Omega$ are coordinates of an $n$-dimensional random vector that
|
||||
maps the results to $RR^n$.
|
||||
|
||||
The probability distribution of $(X_1, dots.c, X_n)$ is now $P((X_1, dots.c,
|
||||
X_n) in B)$ where $B$ are subsets of $RR^n$ (power set of $RR^n)$.
|
||||
|
||||
The probability distribution of the random vector is called the _joint
|
||||
distribution_.
|
||||
|
||||
#fact[
|
||||
Let $X$ and $Y$ both be discrete random variables defined on the same $Omega$
|
||||
Then, the joint PMF is
|
||||
$
|
||||
P(X = x, Y = y) = P_(X,Y) (x,y)
|
||||
$
|
||||
where $p_(X,Y) (x,y) >= 0$ for all possible values $x,y$ of $X$ and $Y$
|
||||
respectively.
|
||||
] And,
|
||||
$
|
||||
sum_(x in X) sum_(y in Y) p_(X,Y) (x,y) = 1
|
||||
$
|
||||
|
||||
#definition[
|
||||
Let $X_1, X_2, ..., X_n$ are discrete random variables defined on $Omega$,
|
||||
their joint PMF is given by
|
||||
$
|
||||
p(k_1, k_2, ..., k_n) = P(X_1 = k_1, X_1 = k_2, ..., X_n = k_n)
|
||||
$
|
||||
for all possible $k_1, ..., k_n$ of $X_1, ..., X_n$.
|
||||
]
|
||||
|
||||
#fact[
|
||||
The joint probability in set notation:
|
||||
$
|
||||
P(X_1 = k_1, X_1 = k_2, ..., X_n = k_n) = P({X_1 = k_1}sect{X_n = k_n})
|
||||
$
|
||||
The joint PDF has the same properties as single variable PDF
|
||||
$
|
||||
p_(X_1,X_2,X_n) (k_1,k_2,...,k_n) >= 0
|
||||
$
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue