auto-update(nvim): 2025-01-08 15:43:40
This commit is contained in:
parent
d0016f370a
commit
9451e7d4b3
1 changed files with 256 additions and 2 deletions
|
@ -102,8 +102,8 @@ as the notation for $n$ dimensional spaces in $RR$?
|
|||
]
|
||||
|
||||
#fact[Generalized DeMorgan's][
|
||||
+ $(union_i A_i)' = sect_i A_i '$
|
||||
+ $(sect_i A_i)' = union_i A_i '$
|
||||
+ $(union.big_i A_i)' = sect.big_i A_i '$
|
||||
+ $(sect.big_i A_i)' = union.big_i A_i '$
|
||||
]
|
||||
|
||||
== Sizes of infinity
|
||||
|
@ -157,3 +157,257 @@ This gives us the following equivalent statement:
|
|||
|
||||
$ N(A) = N(B) <==> exists F : A <-> B $
|
||||
]
|
||||
|
||||
= Lecture #datetime(day: 8, month: 1, year: 2025).display()
|
||||
|
||||
== Probability
|
||||
|
||||
#definition[
|
||||
A *random experiment* is one in which the set of all possible outcomes is known in advance, but one can't predict which outcome will occur on a given trial of the experiment.
|
||||
]
|
||||
|
||||
#example("Finite sample spaces")[
|
||||
Toss a coin:
|
||||
$ Omega = {H,T} $
|
||||
|
||||
Roll a pair of dice:
|
||||
$ Omega = {1,2,3,4,5,6} times {1,2,3,4,5,6} $
|
||||
]
|
||||
|
||||
#example("Countably infinite sample spaces")[
|
||||
Shoot a basket until you make one:
|
||||
$ Omega = {M, F M, F F M, F F F M, dots} $
|
||||
]
|
||||
|
||||
#example("Uncountably infinite sample space")[
|
||||
Waiting time for a bus:
|
||||
$ Omega = {T : t >= 0} $
|
||||
]
|
||||
|
||||
#fact[
|
||||
Elements of $Omega$ are called sample points.
|
||||
]
|
||||
|
||||
#definition[
|
||||
Any properly defined subset of $Omega$ is called an *event*.
|
||||
]
|
||||
|
||||
#example[Dice][
|
||||
Rolling a fair die twice, let $A$ be the event that the combined score of both dice is 10.
|
||||
|
||||
$ A = {(4,6,), (5,5),(6,4)} $
|
||||
]
|
||||
|
||||
Set theory terms $<-> $ probability terms:
|
||||
|
||||
- Superset ($Omega$) $<->$ sample space
|
||||
- Element $<->$ outcome / sample point ($omega$)
|
||||
- Disjoint sets $<->$ mutually exclusive events
|
||||
|
||||
== Classical approach
|
||||
|
||||
Classical approach:
|
||||
|
||||
$ P(a) = (hash A) / (hash Omega) $
|
||||
|
||||
Requires equally likely outcomes and finite sample spaces.
|
||||
|
||||
#remark[
|
||||
With an infinite sample space, the probability becomes 0, which is often wrong.
|
||||
]
|
||||
|
||||
#example("Dice again")[
|
||||
Rolling a fair die twice, let $A$ be the event that the combined score of both dice is 10.
|
||||
|
||||
$
|
||||
A &= {(4,6,), (5,5),(6,4)} \
|
||||
P(A) &= 3 / 36 = 1 / 12
|
||||
$
|
||||
]
|
||||
|
||||
== Relative frequency approach
|
||||
|
||||
$
|
||||
P(A) = (hash "of times" A "occurs in large number of trials") / (hash "of trials")
|
||||
$
|
||||
|
||||
#example[
|
||||
Flipping a coin to determine the probability of it landing heads.
|
||||
]
|
||||
|
||||
== Subjective approach
|
||||
|
||||
Personal definition of probability.
|
||||
|
||||
== Axiomatic approach
|
||||
|
||||
Our focus.
|
||||
|
||||
#definition[
|
||||
$P(dot)$ is a set function satisfying the 3 axioms
|
||||
|
||||
+ $P(A) >= 0, forall A$
|
||||
+ $P(Omega) = 1$
|
||||
+ If $A_i sect A_j = emptyset, forall i != j$, then
|
||||
$ P(union.big_(i=1)^infinity A_i) = sum_(i=1)^infinity P(A_i) $
|
||||
]
|
||||
|
||||
#proposition[
|
||||
$ P(emptyset) = 0 $
|
||||
]
|
||||
|
||||
#proof[
|
||||
By axiom 3,
|
||||
|
||||
$
|
||||
A_1 = emptyset, A_2 = emptyset, A_3 = emptyset \
|
||||
P(emptyset) = sum^infinity_(i=1) P(A_i) = sum^infinity_(i=1) P(emptyset)
|
||||
$
|
||||
Suppose $P(emptyset) != 0$. Then $P >= 0$ by axiom 1 but then $P -> infinity$ in the sum, which implies $Omega > 1$, which is disallowed by axiom 2. So $P(emptyset) = 0$.
|
||||
]
|
||||
|
||||
#proposition[
|
||||
If $A_1, A_2, ..., A_n$ are disjoint, then
|
||||
$ P(union.big^n_(i=1) A_i) = sum^n_(i= 1) P(A_i) $
|
||||
]
|
||||
|
||||
#proof[
|
||||
Consider $(A_1, A_2, ..., A_n, emptyset, emptyset, ...)$.
|
||||
]
|
||||
|
||||
#proposition[Complement][
|
||||
$ P(A') = 1 - P(A) $
|
||||
]
|
||||
|
||||
#proof[
|
||||
$
|
||||
A' union A &= Omega \
|
||||
A' sect A &= emptyset \
|
||||
P(A' union A) &= P(A') + P(A) &"(by axiom 3)"\
|
||||
= P(Omega) &= 1 &"(by axiom 2)"
|
||||
$
|
||||
]
|
||||
|
||||
#proposition[
|
||||
$ A subset.eq B => P(A) <= P(B) $
|
||||
]
|
||||
|
||||
#proof[
|
||||
$ B = A union (A' sect B) $
|
||||
|
||||
but $A$ and ($A' sect B$) are disjoint, so
|
||||
|
||||
$
|
||||
P(B) &= P(A union (A' sect B)) \
|
||||
&= P(A) + P(A' sect B) \
|
||||
&therefore P(B) >= P(A)
|
||||
$
|
||||
]
|
||||
|
||||
#proposition[
|
||||
$ P(A union B) = P(A) + P(B) - P(A sect B) $
|
||||
]
|
||||
|
||||
#proof[
|
||||
$
|
||||
A = (A sect B) union (A sect B') \
|
||||
=> P(A) = P(A sect B) + P(A sect B') \
|
||||
=> P(B) = P(B sect A) + P(B sect A') \
|
||||
P(A) + P(B) = P(A sect B) + P(A sect B) + P(A sect B') + P(A' sect B) \
|
||||
=> P(A) + P(B) - P(A sect B) = P(A sect B) + P(A sect B') + P(A' sect B) \
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
Select one card from a deck of 52 cards.
|
||||
|
||||
$
|
||||
Omega = {1,2,...,52} \
|
||||
A = "card is a heart" = {H 2, H 3, H 4, ..., H"Ace"} \
|
||||
B = "card is an Ace" = {H"Ace", C"Ace", D"Ace", S"Ace"} \
|
||||
C = "card is black" = {C 2, C 3, ..., C"Ace", S 2, S 3, ..., S"Ace"} \
|
||||
P(A) = 13 / 52,
|
||||
P(B) = 4 / 52,
|
||||
P(C) = 26 / 52 \
|
||||
P(A sect B) = 1 / 52 \
|
||||
P(A sect C) = 0 \
|
||||
P(B sect C) = 2 / 52 \
|
||||
P(A union B) = P(A) + P(B) - P(A sect B) = 16 / 52 \
|
||||
P(B') = 1 - P(B) = 48 / 52 \
|
||||
P(A sect B') = P(A) - P(A sect B) = 13 / 52 - 1 / 52 = 12 / 52 \
|
||||
P((A sect B') union (A' sect B)) = P(A sect B') + P(A' sect B) = 15 / 52 \
|
||||
P(A' sect B') = P(A union B)' = 1 - P(A union B) = 36 / 52
|
||||
$
|
||||
]
|
||||
|
||||
== Countable sample spaces
|
||||
|
||||
#definition[
|
||||
A sample space $Omega$ is said to be *countable* if its finite or countably infinite.
|
||||
]
|
||||
|
||||
In such a case, one can list the elements of $Omega$.
|
||||
|
||||
$ Omega = {omega_1, omega_2, omega_3, ...} $
|
||||
with associated probabilities, $p_1, p_2, p_3,...$, where
|
||||
$
|
||||
p_i = P(omega_i) >= 0 \
|
||||
1 = P(Omega) = sum P(omega_i)
|
||||
$
|
||||
|
||||
#example[Fair die, again][
|
||||
All outcomes are equally likely,
|
||||
$ p_1 = p_2 = ... = p_6 = 1 / 6 $
|
||||
Let $A$ be the event that the score is odd = ${1,3,5}$
|
||||
$ P(A) = 3 / 6 $
|
||||
]
|
||||
|
||||
#example[Loaded die][
|
||||
Consider a die where the probabilities of rolling odd sides is double the probability of rolling an even side.
|
||||
$
|
||||
p_2 = p_4 = p_6, p_1 = p_3 = p_5 = 2p_2 \
|
||||
6p_2 + 3p_2 = 9p_2 = 1 \
|
||||
p_2 = 1 / 9, p_1 = 2 / 9
|
||||
$
|
||||
]
|
||||
|
||||
#example[Coins][
|
||||
Toss a fair coin until you get the first head.
|
||||
$
|
||||
Omega = {H, T H, T T H, ...} "(countably infinite)" \
|
||||
P(H) = 1 / 2 \
|
||||
P(T T H) = (1 / 2)^3 \
|
||||
P(Omega) = sum_(n=1)^infinity (1 / 2)^n = 1 / (1 - 1 / 2) - 1 = 1
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
Birthdays.
|
||||
|
||||
What is the probability two people share the same birthday?
|
||||
|
||||
$
|
||||
Omega = [1,365] times [1,365] \
|
||||
P(A) = 365 / 365^2 = 1 / 365
|
||||
$
|
||||
]
|
||||
|
||||
== Continuous sample spaces
|
||||
|
||||
#definition[
|
||||
A *continuous sample space* contains an interval in $RR$ and is uncountably infinite.
|
||||
]
|
||||
|
||||
#definition[
|
||||
A probability density function (#smallcaps[pdf]) gives the probability at the point
|
||||
$s$.
|
||||
]
|
||||
|
||||
Properties of the #smallcaps[pdf]:
|
||||
|
||||
- $f(s) >= 0, forall p_i >= 0$
|
||||
- $integral_S f(s) dif s = 1, forall p_i >= 0$
|
||||
|
||||
#example[
|
||||
Waiting time for bus: $Omega = {s : s >= 0}$.
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue