auto-update(nvim): 2025-01-17 12:20:52
This commit is contained in:
parent
64991baed6
commit
9f8dc5dfbf
1 changed files with 59 additions and 0 deletions
|
@ -284,3 +284,62 @@ A conditional may be true even when the antedecent and consequent are unrelated.
|
||||||
|
|
||||||
It is true because $P(x,y)$ is injective (one-to-one).
|
It is true because $P(x,y)$ is injective (one-to-one).
|
||||||
]
|
]
|
||||||
|
|
||||||
|
= Missed a bunch of lecture :(
|
||||||
|
|
||||||
|
Probably not any important content, though.
|
||||||
|
|
||||||
|
= Lecture #datetime(day: 17, month: 1, year: 2025).display()
|
||||||
|
|
||||||
|
== Proof of a biconditional statement
|
||||||
|
|
||||||
|
To prove a biconditional statement of the form $P <=> Q$, we need to show
|
||||||
|
$ P => Q and Q => P $
|
||||||
|
|
||||||
|
#theorem("Fundamental Theorem of Arithmetic")[
|
||||||
|
$forall x in ZZ, x > 1$, $x$ can be written as a product of prime factors.
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Assume $p$ is prime. Then $p | b$ iff $p | b^2$.
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
== Proof by contradiction
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
A proof by contradiction of the statement $P$ proceeds by assuming $not P$,
|
||||||
|
then showing that this fact leads to a contradiction.
|
||||||
|
|
||||||
|
A proof by contradiction of $P => Q$ proceeds by assuming $P and not Q$, then
|
||||||
|
showing a contradiction, implying that $P$ indeed implies $Q$.
|
||||||
|
]
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
A real number $x in RR$ is called rational iff
|
||||||
|
$ exists p,q in ZZ, x = p / q $
|
||||||
|
|
||||||
|
$x$ is irrational if it is not rational.
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Prove that if $x$ is rational and $y$ is irrational, then $2x - y$ is irrational.
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Suppose that $x$ is rational and $y$ is irrational but $2x - y$ is
|
||||||
|
rational. Then $x = a / b$ and $2x - y = c/d$ where $a,b,c,d in ZZ$ and $b
|
||||||
|
!= 0, d != 0$.
|
||||||
|
|
||||||
|
Then
|
||||||
|
$
|
||||||
|
2a / b - y &= c / d \
|
||||||
|
y &= (2a) / b - c / d \
|
||||||
|
y = (2a d - b c) / (b d) &= m / n
|
||||||
|
$
|
||||||
|
which implies $y = m/n$ and therefore we have a contradiction. So $2x - y$
|
||||||
|
is irrational.
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
Loading…
Reference in a new issue