From a640c1be658c24dee8e81ffb9aca76a1e2b5f499 Mon Sep 17 00:00:00 2001 From: Youwen Wu Date: Sat, 18 Jan 2025 02:43:37 -0800 Subject: [PATCH] auto-update(nvim): 2025-01-18 02:43:37 --- documents/by-course/pstat-120a/hw1/main.typ | 42 ++++++++++++++++++++- 1 file changed, 40 insertions(+), 2 deletions(-) diff --git a/documents/by-course/pstat-120a/hw1/main.typ b/documents/by-course/pstat-120a/hw1/main.typ index 00eab0d..14f867d 100644 --- a/documents/by-course/pstat-120a/hw1/main.typ +++ b/documents/by-course/pstat-120a/hw1/main.typ @@ -7,7 +7,9 @@ date: "Winter 2025", ) -1. #[ +#set enum(spacing: 2em) + ++ #[ #set enum(numbering: "a)", spacing: 2em) + #[ @@ -31,7 +33,43 @@ + #[ $ E union F &= (A sect B) union (A sect B') \ - &= + &= (A union A) sect (B union B') \ + &= A sect Omega \ + &= A $ ] ] + ++ #[ + #set enum(numbering: "a)", spacing: 2em) + + + ${15, 25, 35, 45, 51, 53, 55, 57, 59, 65, 75, 85, 95 }$ + + ${50, 52, 56, 58}$ + + $emptyset$ + ] + ++ #[ + #set enum(numbering: "a)", spacing: 2em) + + + The sample space is every value of the die (1-6) paired with heads and paired with tails. That is, ${1,2,3,4,5,6} times {H,T}$, with cardinality 12. + + There are $12^10$ outcomes. + + If no participants roll a 5, then we omit any outcome in our sample space where the die outcome is 5, leaving us with 10 outcomes of the die and coin. Now we have $10^10$ outcomes. If at least 1 person rolls a 5, then we note that this is simply the complement of the previous result. So we have $12^10 - 10^10$ outcomes total. + ] + ++ #[ + #set enum(numbering: "a)", spacing: 2em) + + + #[ + The sample space can be represented as a 6-tuple where the position 1-6 + represents balls numbered 1-6, and the value represents the square it + was sent to. So it's + $ {{x_1,x_2,x_3,x_4,x_5,x_6} : x_i in {1,2,3,4}}, i = 1,...6 $ + ] + + #[ + When the balls are indistinguishable, we can instead represent it as + 4-tuples where the position represents the 1st, 2nd, 3rd, or 4th square, + and the value represents how many balls landed. Additionally the sum of all + the elements must be 6. + $ {{x_1, x_2, x_3, x_4} : x_i >= 0, i = 1,...,6 sum_(j=1)^4 x_j = 6} $ + ] + ]