auto-update(nvim): 2025-01-17 15:09:08
This commit is contained in:
parent
9f8dc5dfbf
commit
ab73cfe5c7
1 changed files with 88 additions and 0 deletions
|
@ -343,3 +343,91 @@ $ P => Q and Q => P $
|
||||||
is irrational.
|
is irrational.
|
||||||
]
|
]
|
||||||
]
|
]
|
||||||
|
|
||||||
|
#fact[$sqrt(2)$ is irrational.]
|
||||||
|
|
||||||
|
The proof of this fact generalizes nicely to show that the square root of any
|
||||||
|
non-perfect square is irrational.
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Prove that $sqrt(6)$ is irrational.
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Seeking a contradiction, suppose $sqrt(6)$ is rational. Then $sqrt(6) =
|
||||||
|
a/b, exists a,b in ZZ$ with $b != 0$.
|
||||||
|
|
||||||
|
|
||||||
|
Then
|
||||||
|
$ a^2 = 6b^2 = 3 (2b^2) $
|
||||||
|
Since $a^2 = a dot a$, $a$ has $j = 0,1,2, ...$ factors of $3$ in its
|
||||||
|
unique prime factorization, then $a^2$ has $2j$ factors of $3$, which is to
|
||||||
|
say that $a^2$ has an even $hash$ factors of 3.
|
||||||
|
|
||||||
|
Similarly, $b^2$ has an even $hash$ of 3, say $2k$, where $k = 0, 1, 2,
|
||||||
|
...$. Then $3(2b^2)$ has $2k + 1$ $hash$ factors of 3, an odd amount.
|
||||||
|
|
||||||
|
But $a^2$ = $3(b^2)$ so they must have the same factors, a contradiction.
|
||||||
|
Therefore $sqrt(6)$ must be irrational.
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
#exercise[
|
||||||
|
Prove that $sqrt(2)$ is irrational using the method above.
|
||||||
|
]
|
||||||
|
|
||||||
|
#exercise[
|
||||||
|
Show that $sqrt(15)$ is irrational.
|
||||||
|
]
|
||||||
|
|
||||||
|
#exercise("Euclid's Theorem")[
|
||||||
|
Show that there are an infinite amount of prime numbers.
|
||||||
|
]
|
||||||
|
|
||||||
|
== Proofs involving quantifiers
|
||||||
|
|
||||||
|
Many of our proofs up to this point have been of the form
|
||||||
|
$ forall x in U, P(x) => Q(x) $
|
||||||
|
|
||||||
|
To prove a statement of this form,
|
||||||
|
|
||||||
|
+ Let $x in U$.
|
||||||
|
+ Assume $P(x)$.
|
||||||
|
+ Show $Q(x)$.
|
||||||
|
+ Conclude $forall x in U, P(x) => Q(x)$.
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Prove that $forall x,y in ZZ$, $2x + 14y != 3$.
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Seeking a contradiction, suppose instead $2x + 14y = 3$. Then
|
||||||
|
$2x $ is even, and $14y = 2(7y)$ is even, and therefore $2x + 14y$ is even.
|
||||||
|
But $3$ is odd, so they cannot be equal.
|
||||||
|
|
||||||
|
Alternatively simply write
|
||||||
|
$ x + 7y = 1.5 $
|
||||||
|
but the ring of $ZZ$ is closed under addition so we have a contradiction.
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
To prove a statement of the form
|
||||||
|
|
||||||
|
$ exists x in U, P(x) $
|
||||||
|
|
||||||
|
+ Find at least one $x in U$ that makes $P(x)$ true.
|
||||||
|
+ Conclude $exists x in U, P(x)$.
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Prove that there is a natural number $N$ such that for all natural numbers $n > N$,
|
||||||
|
$ 1 / n < 0.02 $
|
||||||
|
We want $1/n < 0.02$, so the idea is to play around with this statement. Taking reciprocals,
|
||||||
|
$ n > 50 $
|
||||||
|
#proof[
|
||||||
|
Let $N = 50$. Then $n in NN$ and $n > N = 50$,
|
||||||
|
$ 1 / n < 1 / 50 = 0.02 $
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
#exercise[
|
||||||
|
Prove that between any two rational numbers $x$ and $y$ there is another
|
||||||
|
rational number $z$.
|
||||||
|
]
|
||||||
|
|
Loading…
Reference in a new issue