auto-update(nvim): 2025-02-03 15:15:35
This commit is contained in:
parent
1e177107d8
commit
b329bd3a23
1 changed files with 268 additions and 2 deletions
|
@ -365,9 +365,9 @@ This is mostly a formal manipulation to derive the obviously true proposition fr
|
|||
$
|
||||
]
|
||||
|
||||
#proposition[
|
||||
#proposition("Inclusion-exclusion principle")[
|
||||
$ P(A union B) = P(A) + P(B) - P(A sect B) $
|
||||
]
|
||||
]<inclusion-exclusion>
|
||||
|
||||
#proof[
|
||||
$
|
||||
|
@ -1143,3 +1143,269 @@ exactly one sequence that gives us success.
|
|||
(5 / 6)^7
|
||||
$
|
||||
]
|
||||
|
||||
= Lecture #datetime(day: 3, month: 2, year: 2025).display()
|
||||
|
||||
== CDFs, PMFs, PDFs
|
||||
|
||||
Properties of a CDF:
|
||||
|
||||
Any CDF $F(x) = P(X <= x)$ satisfies
|
||||
|
||||
1. $F(-infinity) = 0$, $F(infinity) = 1$
|
||||
2. $F(x)$ is non-decreasing in $x$ (monotonically increasing)
|
||||
$ s < t => F(s) <= F(t) $
|
||||
3. $P(a < X <= b) = P(X <= b) - P(X <= a) = F(b) - F(a)$
|
||||
|
||||
#example[
|
||||
Let $X$ be a continuous random variable with density (pdf)
|
||||
|
||||
$
|
||||
f(x) = cases(
|
||||
c x^2 &"for" 0 < x < 2,
|
||||
0 &"otherwise"
|
||||
)
|
||||
$
|
||||
|
||||
1. What is $c$?
|
||||
|
||||
$c$ is such that
|
||||
$
|
||||
1 = integral^infinity_(-infinity) f(x) dif x = integral_0^2 c x^2 dif x
|
||||
$
|
||||
|
||||
2. Find the probability that $X$ is between 1 and 1.4.
|
||||
|
||||
Integrate the curve between 1 and 1.4.
|
||||
|
||||
$
|
||||
integral_1^1.4 3 / 8 x^2 dif x = (x^3 / 8) |_1^1.4 \
|
||||
= 0.218
|
||||
$
|
||||
|
||||
This is the probability that $X$ lies between 1 and 1.4.
|
||||
|
||||
3. Find the probability that $X$ is between 1 and 3.
|
||||
|
||||
Idea: integrate between 1 and 3, be careful after 2.
|
||||
|
||||
$ integral^2_1 3 / 8 x^2 dif x + integral_2^3 0 dif x = $
|
||||
|
||||
4. What is the CDF for $P(X <= x)$? Integrate the curve to $x$.
|
||||
|
||||
$
|
||||
F(x) = P(X <= x) = integral_(-infinity)^x f(t) dif t \
|
||||
= integral_0^x 3 / 8 t^2 dif t \
|
||||
= x^3 / 8
|
||||
$
|
||||
|
||||
Important: include the range!
|
||||
|
||||
$
|
||||
F(x) = cases(
|
||||
0 &"for" x <= 0,
|
||||
x^3/8 &"for" 0 < x < 2,
|
||||
1 &"for" x >= 2
|
||||
)
|
||||
$
|
||||
|
||||
5. Find a point $a$ such that you integrate up to the point to find exactly $1/2$
|
||||
the area.
|
||||
|
||||
We want to find $1/2 = P(X <= a)$.
|
||||
|
||||
$ 1 / 2 = P(X <= a) = F(a) = a^3 / 8 => a = root(3, 4) $
|
||||
]
|
||||
|
||||
== The (continuous) uniform distribution
|
||||
|
||||
The most simple and the best of the named distributions!
|
||||
|
||||
#definition[
|
||||
Let $[a,b]$ be a bounded interval on the real line. A random variable $X$ has the uniform distribution on the interval $[a,b]$ if $X$ has the density function
|
||||
|
||||
$
|
||||
f(x) = cases(
|
||||
1/(b-a) &"for" x in [a,b],
|
||||
0 &"for" x in.not [a,b]
|
||||
)
|
||||
$
|
||||
|
||||
Abbreviate this by $X ~ "Unif" [a,b]$.
|
||||
]<continuous-uniform>
|
||||
|
||||
The graph of $"Unif" [a,b]$ is a constant line at height $1/(b-a)$ defined
|
||||
across $[a,b]$. The integral is just the area of a rectangle, and we can check
|
||||
it is 1.
|
||||
|
||||
#fact[
|
||||
For $X ~ "Unif" [a,b]$, its cumulative distribution function (CDF) is given by:
|
||||
|
||||
$
|
||||
F_x (x) = cases(
|
||||
0 &"for" x < a,
|
||||
(x-a)/(b-a) &"for" x in [a,b],
|
||||
1 &"for" x > b
|
||||
)
|
||||
$
|
||||
]
|
||||
|
||||
#fact[
|
||||
If $X ~ "Unif" [a,b]$, and $[c,d] subset [a,b]$, then
|
||||
$
|
||||
P(c <= X <= d) = integral_c^d 1 / (b-a) dif x = (d-c) / (b-a)
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
Let $Y$ be a uniform random variable on $[-2,5]$. Find the probability that its
|
||||
absolute value is at least 1.
|
||||
|
||||
$Y$ takes values in the interval $[-2,5]$, so the absolute value is at least 1 iff. $Y in [-2,1] union [1,5]$.
|
||||
|
||||
The density function of $Y$ is $f(x) = 1/(5- (-2)) = 1/7$ on $[-2,5]$ and 0 everywhere else.
|
||||
|
||||
So,
|
||||
|
||||
$
|
||||
P(|Y| >= 1) &= P(Y in [-2,-1] union [1,5]) \
|
||||
&= P(-2 <= Y <= -1) + P(1 <= Y <= 5) \
|
||||
&= 5 / 7
|
||||
$
|
||||
]
|
||||
|
||||
== The exponential distribution
|
||||
|
||||
The geometric distribution can be viewed as modeling waiting times, in a discrete setting, i.e. we wait for $n - 1$ failures to arrive at the $n^"th"$ success.
|
||||
|
||||
The exponential distribution is the continuous analogue to the geometric
|
||||
distribution, in that we often use it to model waiting times in the continuous
|
||||
sense. For example, the first custom to enter the barber shop.
|
||||
|
||||
#definition[
|
||||
Let $0 < lambda < infinity$. A random variable $X$ has the exponential distribution with parameter $lambda$ if $X$ has PDF
|
||||
|
||||
$
|
||||
f(x) = cases(
|
||||
lambda e^(-lambda x) &"for" x >= 0,
|
||||
0 &"for" x < 0
|
||||
)
|
||||
$
|
||||
|
||||
Abbreviate this by $X ~ "Exp"(lambda)$, the exponential distribution with rate $lambda$.
|
||||
|
||||
The CDF of the $"Exp"(lambda)$ distribution is given by:
|
||||
|
||||
$
|
||||
F(t) + cases(
|
||||
0 &"if" t <0,
|
||||
1 - e^(-lambda t) &"if" t>= 0
|
||||
)
|
||||
$
|
||||
]
|
||||
|
||||
#example[
|
||||
Suppose the length of a phone call, in minutes, is well modeled by an exponential random variable with a rate $lambda = 1/10$.
|
||||
|
||||
1. What is the probability that a call takes more than 8 minutes?
|
||||
2. What is the probability that a call takes between 8 and 22 minutes?
|
||||
|
||||
Let $X$ be the length of the phone call, so that $X ~ "Exp"(1/10)$. Then we can find the desired probability by:
|
||||
|
||||
$
|
||||
P(X > 8) &= 1 - P(X <= 8) \
|
||||
&= 1 - F_x (8) \
|
||||
&= 1 - (1 - e^(-(1 / 10) dot 8)) \
|
||||
&= e^(-8 / 10) approx 0.4493
|
||||
$
|
||||
|
||||
Now to find $P(8 < X < 22)$, we can take the difference in CDFs:
|
||||
|
||||
$
|
||||
&P(X > 8) - P(X >= 22) \
|
||||
&= e^(-8 / 10) - e^(-22 / 10) \
|
||||
&approx 0.3385
|
||||
$
|
||||
]
|
||||
|
||||
#fact("Memoryless property of the exponential distribution")[
|
||||
Suppose that $X ~ "Exp"(lambda)$. Then for any $s,t > 0$, we have
|
||||
$
|
||||
P(X > t + s | X > t) = P(X > s)
|
||||
$
|
||||
]<memoryless>
|
||||
|
||||
This is like saying if I've been waiting 5 minutes and then 3 minutes for the
|
||||
bus, what is the probability that I'm gonna wait more than 5 + 3 minutes, given
|
||||
that I've already waited 5 minutes? And that's precisely equal to just the
|
||||
probability I'm gonna wait more than 3 minutes.
|
||||
|
||||
#proof[
|
||||
$
|
||||
P(X > t + s | X > t) = (P(X > t + s sect X > t)) / (P(X > t)) \
|
||||
= P(X > t + s) / P(X > t)
|
||||
= e^(-lambda (t+ s)) / (e^(-lambda t)) = e^(-lambda s) \
|
||||
equiv P(X > s)
|
||||
$
|
||||
]
|
||||
|
||||
== Gamma distribution
|
||||
|
||||
#definition[
|
||||
Let $r, lambda > 0$. A random variable $X$ has the *gamma distribution* with parameters $(r, lambda)$ if $X$ is nonnegative and has probability density function
|
||||
|
||||
$
|
||||
f(x) = cases(
|
||||
(lambda^r x^(r-2))/(Gamma(r)) e^(-lambda x) &"for" x >= 0,
|
||||
0 &"for" x < 0
|
||||
)
|
||||
$
|
||||
|
||||
Abbreviate this by $X ~ "Gamma"(r, lambda)$.
|
||||
]
|
||||
|
||||
The gamma function $Gamma(r)$ generalizes the factorial function and is defined as
|
||||
|
||||
$
|
||||
Gamma(r) = integral_0^infinity x^(r-1) e^(-x) dif x, "for" r > 0
|
||||
$
|
||||
|
||||
Special case: $Gamma(n) = (n - 1)!$ if $n in ZZ^+$.
|
||||
|
||||
#remark[
|
||||
The $"Exp"(lambda)$ distribution is a special case of the gamma distribution,
|
||||
with parameter $r = 1$.
|
||||
]
|
||||
|
||||
== The normal (Gaussian) distribution
|
||||
|
||||
#definition[
|
||||
A random variable $ZZ$ has the *standard normal distribution* if $Z$ has
|
||||
density function
|
||||
|
||||
$
|
||||
phi(x) = 1 / sqrt(2 pi) e^(-x^2 / 2)
|
||||
$
|
||||
on the real line. Abbreviate this by $Z ~ N(0,1)$.
|
||||
]<normal-dist>
|
||||
|
||||
#fact("CDF of a standard normal random variable")[
|
||||
Let $Z~N(0,1)$ be normally distributed. Then its CDF is given by
|
||||
$
|
||||
Phi(x) = integral_(-infinity)^x phi(s) dif s = integral_(-infinity)^x 1 / sqrt(2 pi) e^(-(-s^2) / 2) dif s
|
||||
$
|
||||
]
|
||||
|
||||
The normal distribution is so important, instead of the standard $f_Z(x)$ and
|
||||
$F_z(x)$, we use the special $phi(x)$ and $Phi(x)$.
|
||||
|
||||
#fact[
|
||||
$
|
||||
integral_(-infinity)^infinity e^(-s^2 / 2) dif s = sqrt(2 pi)
|
||||
$
|
||||
|
||||
No closed form of the standard normal CDF $Phi$ exists, so we are left to either:
|
||||
- approximate
|
||||
- use technology (calculator)
|
||||
- use the standard normal probability table in the textbook
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue