auto-update(nvim): 2025-01-23 14:21:33
This commit is contained in:
parent
f27dad47c8
commit
ba14b89a35
3 changed files with 116 additions and 342 deletions
|
@ -250,7 +250,7 @@ When $F(t,y)$ (RHS) is not nice (differentiable) at the initial value $(t_0,
|
||||||
y_0)$, existence and uniqueness (E/U) could fail. We do have E/U when $F(t,y)$
|
y_0)$, existence and uniqueness (E/U) could fail. We do have E/U when $F(t,y)$
|
||||||
is nice.
|
is nice.
|
||||||
|
|
||||||
== Existence of solutions to IVT - linear case
|
== Existence of solutions to IVP - linear case
|
||||||
|
|
||||||
The first order linear ODE is
|
The first order linear ODE is
|
||||||
|
|
||||||
|
@ -339,3 +339,52 @@ $ y' = 1 / 2 cos(y) + t, y(0) = -1 $
|
||||||
|
|
||||||
The righthand side is nice, by @eutheorem, it has a unique solution. We can't
|
The righthand side is nice, by @eutheorem, it has a unique solution. We can't
|
||||||
find an explicit solution.
|
find an explicit solution.
|
||||||
|
|
||||||
|
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
|
||||||
|
|
||||||
|
Second order linear differential equation.
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' = p(t)y' + q(t)y = g(t)
|
||||||
|
$
|
||||||
|
|
||||||
|
We say it is homogenous if $g(t) = 0$.
|
||||||
|
|
||||||
|
== Initial value problem and uniqueness on 2nd order linear ODEs
|
||||||
|
|
||||||
|
Suppose $p(t)$, $q(t)$, and $g(t)$ are given continuous functions defined on
|
||||||
|
$I$.
|
||||||
|
$
|
||||||
|
y'' = p(t)y' + q(t)y = g(t) \
|
||||||
|
y(t_0) = y_0, y'(t_0) = y'_0
|
||||||
|
$
|
||||||
|
|
||||||
|
has a unique solution $y(t)$ defined on $I$. Same as first order case. Always write in standard form first before identifying.
|
||||||
|
|
||||||
|
#example[
|
||||||
|
What is the largest interval on which the IVP
|
||||||
|
$
|
||||||
|
(t+1)y'' + y = 3, y(0) = 1, y'(0) = 0
|
||||||
|
$
|
||||||
|
is certain to have a solution?
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' + 1 / (t+1) y = 3 / (t+1)
|
||||||
|
$
|
||||||
|
|
||||||
|
So the functions are nice except at -1. Our intervals are
|
||||||
|
|
||||||
|
$
|
||||||
|
(-infinity, -1), (-1, infinity)
|
||||||
|
$
|
||||||
|
|
||||||
|
But we have initial values at 0, so we know for certain that a solution (but not for certain it's the only solution) exists
|
||||||
|
|
||||||
|
$
|
||||||
|
(-1, infinity)
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
== 2nd order linear homogenous ODEs
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,341 +0,0 @@
|
||||||
#import "@preview/ctheorems:1.1.3": *
|
|
||||||
#import "@preview/showybox:2.0.3": showybox
|
|
||||||
|
|
||||||
#let colors = (
|
|
||||||
rgb("#9E9E9E"),
|
|
||||||
rgb("#F44336"),
|
|
||||||
rgb("#E91E63"),
|
|
||||||
rgb("#9C27B0"),
|
|
||||||
rgb("#673AB7"),
|
|
||||||
rgb("#3F51B5"),
|
|
||||||
rgb("#2196F3"),
|
|
||||||
rgb("#03A9F4"),
|
|
||||||
rgb("#00BCD4"),
|
|
||||||
rgb("#009688"),
|
|
||||||
rgb("#4CAF50"),
|
|
||||||
rgb("#8BC34A"),
|
|
||||||
rgb("#CDDC39"),
|
|
||||||
rgb("#FFEB3B"),
|
|
||||||
rgb("#FFC107"),
|
|
||||||
rgb("#FF9800"),
|
|
||||||
rgb("#FF5722"),
|
|
||||||
rgb("#795548"),
|
|
||||||
rgb("#9E9E9E"),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let dvdtyp(
|
|
||||||
title: "",
|
|
||||||
subtitle: "",
|
|
||||||
author: "",
|
|
||||||
abstract: none,
|
|
||||||
bibliography: none,
|
|
||||||
paper-size: "a4",
|
|
||||||
date: "today",
|
|
||||||
body,
|
|
||||||
) = {
|
|
||||||
set document(title: title, author: author)
|
|
||||||
|
|
||||||
set std.bibliography(style: "springer-mathphys", title: [References])
|
|
||||||
|
|
||||||
show: thmrules
|
|
||||||
|
|
||||||
set page(
|
|
||||||
numbering: "1",
|
|
||||||
number-align: center,
|
|
||||||
header: locate(loc => {
|
|
||||||
if loc.page() == 1 {
|
|
||||||
return
|
|
||||||
}
|
|
||||||
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
|
|
||||||
font: "New Computer Modern",
|
|
||||||
)[
|
|
||||||
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
|
|
||||||
#h(1fr)
|
|
||||||
*#title*
|
|
||||||
]]
|
|
||||||
}),
|
|
||||||
paper: paper-size,
|
|
||||||
// The margins depend on the paper size.
|
|
||||||
margin: (
|
|
||||||
left: (86pt / 216mm) * 100%,
|
|
||||||
right: (86pt / 216mm) * 100%,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
set heading(numbering: "1.")
|
|
||||||
show heading: it => {
|
|
||||||
set text(font: "Libertinus Serif")
|
|
||||||
|
|
||||||
block[
|
|
||||||
#if it.numbering != none {
|
|
||||||
text(rgb("#2196F3"), weight: 500)[#sym.section]
|
|
||||||
|
|
||||||
text(rgb("#2196F3"))[#counter(heading).display() ]
|
|
||||||
}
|
|
||||||
#it.body
|
|
||||||
#v(0.5em)
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
set text(font: "New Computer Modern", lang: "en")
|
|
||||||
|
|
||||||
show math.equation: set text(weight: 400)
|
|
||||||
|
|
||||||
|
|
||||||
// Title row.
|
|
||||||
align(center)[
|
|
||||||
#set text(font: "Libertinus Serif")
|
|
||||||
#block(text(weight: 700, 26pt, title))
|
|
||||||
|
|
||||||
|
|
||||||
#if subtitle != none [#text(12pt, weight: 500)[#(
|
|
||||||
subtitle
|
|
||||||
)]]
|
|
||||||
|
|
||||||
#if author != none [#text(16pt)[#smallcaps(author)]]
|
|
||||||
#v(1.2em, weak: true)
|
|
||||||
|
|
||||||
#if date == "today" {
|
|
||||||
datetime.today().display("[day] [month repr:long] [year]")
|
|
||||||
} else {
|
|
||||||
date
|
|
||||||
}
|
|
||||||
|
|
||||||
]
|
|
||||||
|
|
||||||
if abstract != none [
|
|
||||||
#v(2.2em)
|
|
||||||
#set text(font: "Libertinus Serif")
|
|
||||||
#pad(x: 14%, abstract)
|
|
||||||
#v(1em)
|
|
||||||
]
|
|
||||||
|
|
||||||
set outline(fill: repeat[~.], indent: 1em)
|
|
||||||
|
|
||||||
show outline: set heading(numbering: none)
|
|
||||||
show outline: set par(first-line-indent: 0em)
|
|
||||||
|
|
||||||
show outline.entry.where(level: 1): it => {
|
|
||||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
|
|
||||||
}
|
|
||||||
show outline.entry: it => {
|
|
||||||
h(1em)
|
|
||||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// Main body.
|
|
||||||
set par(
|
|
||||||
justify: true,
|
|
||||||
spacing: 0.65em,
|
|
||||||
first-line-indent: 2em,
|
|
||||||
)
|
|
||||||
|
|
||||||
body
|
|
||||||
|
|
||||||
// Display the bibliography, if any is given.
|
|
||||||
if bibliography != none {
|
|
||||||
show std.bibliography: set text(footnote-size)
|
|
||||||
show std.bibliography: set block(above: 11pt)
|
|
||||||
show std.bibliography: pad.with(x: 0.5pt)
|
|
||||||
bibliography
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#let thmtitle(t, color: rgb("#000000")) = {
|
|
||||||
return text(
|
|
||||||
font: "Libertinus Serif",
|
|
||||||
weight: "semibold",
|
|
||||||
fill: color,
|
|
||||||
)[#t]
|
|
||||||
}
|
|
||||||
#let thmname(t, color: rgb("#000000")) = {
|
|
||||||
return text(font: "Libertinus Serif", fill: color)[(#t)]
|
|
||||||
}
|
|
||||||
|
|
||||||
#let thmtext(t, color: rgb("#000000")) = {
|
|
||||||
let a = t.children
|
|
||||||
if (a.at(0) == [ ]) {
|
|
||||||
a.remove(0)
|
|
||||||
}
|
|
||||||
t = a.join()
|
|
||||||
|
|
||||||
return text(font: "New Computer Modern", fill: color)[#t]
|
|
||||||
}
|
|
||||||
|
|
||||||
#let thmbase(
|
|
||||||
identifier,
|
|
||||||
head,
|
|
||||||
..blockargs,
|
|
||||||
supplement: auto,
|
|
||||||
padding: (top: 0.5em, bottom: 0.5em),
|
|
||||||
namefmt: x => [(#x)],
|
|
||||||
titlefmt: strong,
|
|
||||||
bodyfmt: x => x,
|
|
||||||
separator: [. \ ],
|
|
||||||
base: "heading",
|
|
||||||
base_level: none,
|
|
||||||
) = {
|
|
||||||
if supplement == auto {
|
|
||||||
supplement = head
|
|
||||||
}
|
|
||||||
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
|
|
||||||
if not name == none {
|
|
||||||
name = [ #namefmt(name)]
|
|
||||||
} else {
|
|
||||||
name = []
|
|
||||||
}
|
|
||||||
if title == auto {
|
|
||||||
title = head
|
|
||||||
}
|
|
||||||
if not number == none {
|
|
||||||
title += " " + number
|
|
||||||
}
|
|
||||||
title = titlefmt(title)
|
|
||||||
body = [#pad(top: 2pt, bodyfmt(body))]
|
|
||||||
pad(
|
|
||||||
..padding,
|
|
||||||
showybox(
|
|
||||||
width: 100%,
|
|
||||||
radius: 0.3em,
|
|
||||||
breakable: true,
|
|
||||||
padding: (top: 0em, bottom: 0em),
|
|
||||||
..blockargs.named(),
|
|
||||||
..blockargs_individual.named(),
|
|
||||||
[
|
|
||||||
#title#name#titlefmt(separator)#body
|
|
||||||
],
|
|
||||||
),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
let auxthmenv = thmenv(
|
|
||||||
identifier,
|
|
||||||
base,
|
|
||||||
base_level,
|
|
||||||
boxfmt,
|
|
||||||
).with(supplement: supplement)
|
|
||||||
|
|
||||||
return auxthmenv.with(numbering: "1.1")
|
|
||||||
}
|
|
||||||
|
|
||||||
#let styled-thmbase = thmbase.with(
|
|
||||||
titlefmt: thmtitle,
|
|
||||||
namefmt: thmname,
|
|
||||||
bodyfmt: thmtext,
|
|
||||||
)
|
|
||||||
|
|
||||||
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
|
|
||||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
|
||||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
|
||||||
namefmt: thmname.with(color: color.darken(30%)),
|
|
||||||
frame: (
|
|
||||||
body-color: color.lighten(92%),
|
|
||||||
border-color: color.darken(10%),
|
|
||||||
thickness: 1.5pt,
|
|
||||||
inset: 1.2em,
|
|
||||||
radius: 0.3em,
|
|
||||||
),
|
|
||||||
..builderargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
#let builder-thmline(
|
|
||||||
color: rgb("#000000"),
|
|
||||||
..builderargs,
|
|
||||||
) = styled-thmbase.with(
|
|
||||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
|
||||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
|
||||||
namefmt: thmname.with(color: color.darken(30%)),
|
|
||||||
frame: (
|
|
||||||
body-color: color.lighten(92%),
|
|
||||||
border-color: color.darken(10%),
|
|
||||||
thickness: (left: 2pt),
|
|
||||||
inset: 1.2em,
|
|
||||||
radius: 0em,
|
|
||||||
),
|
|
||||||
..builderargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
#let problem-style = builder-thmbox(
|
|
||||||
color: colors.at(11),
|
|
||||||
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let exercise = problem-style("item", "Exercise")
|
|
||||||
#let problem = exercise
|
|
||||||
|
|
||||||
#let theorem-style = builder-thmbox(
|
|
||||||
color: colors.at(6),
|
|
||||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let example-style = builder-thmbox(
|
|
||||||
color: colors.at(16),
|
|
||||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let theorem = theorem-style("item", "Theorem")
|
|
||||||
#let lemma = theorem-style("item", "Lemma")
|
|
||||||
#let corollary = theorem-style("item", "Corollary")
|
|
||||||
|
|
||||||
#let definition-style = builder-thmline(color: colors.at(8))
|
|
||||||
|
|
||||||
// #let definition = definition-style("definition", "Definition")
|
|
||||||
#let proposition = definition-style("item", "Proposition")
|
|
||||||
#let remark = definition-style("item", "Remark")
|
|
||||||
#let observation = definition-style("item", "Observation")
|
|
||||||
|
|
||||||
// #let example-style = builder-thmline(color: colors.at(16))
|
|
||||||
|
|
||||||
#let example = example-style("item", "Example")
|
|
||||||
|
|
||||||
#let proof(body, name: none) = {
|
|
||||||
v(0.5em)
|
|
||||||
[_Proof_]
|
|
||||||
if name != none {
|
|
||||||
[ #thmname[#name]]
|
|
||||||
}
|
|
||||||
[.]
|
|
||||||
body
|
|
||||||
h(1fr)
|
|
||||||
|
|
||||||
// Add a word-joiner so that the proof square and the last word before the
|
|
||||||
// 1fr spacing are kept together.
|
|
||||||
sym.wj
|
|
||||||
|
|
||||||
// Add a non-breaking space to ensure a minimum amount of space between the
|
|
||||||
// text and the proof square.
|
|
||||||
sym.space.nobreak
|
|
||||||
|
|
||||||
$square.stroked$
|
|
||||||
v(0.5em)
|
|
||||||
}
|
|
||||||
|
|
||||||
#let fact = thmplain(
|
|
||||||
"item",
|
|
||||||
"Fact",
|
|
||||||
titlefmt: content => [*#content.*],
|
|
||||||
namefmt: content => [_(#content)._],
|
|
||||||
separator: [],
|
|
||||||
inset: 0pt,
|
|
||||||
padding: (bottom: 0.5em, top: 0.5em),
|
|
||||||
)
|
|
||||||
#let abuse = thmplain(
|
|
||||||
"item",
|
|
||||||
"Abuse of Notation",
|
|
||||||
titlefmt: content => [*#content.*],
|
|
||||||
namefmt: content => [_(#content)._],
|
|
||||||
separator: [],
|
|
||||||
inset: 0pt,
|
|
||||||
padding: (bottom: 0.5em, top: 0.5em),
|
|
||||||
)
|
|
||||||
#let definition = thmplain(
|
|
||||||
"item",
|
|
||||||
"Definition",
|
|
||||||
titlefmt: content => [*#content.*],
|
|
||||||
namefmt: content => [_(#content)._],
|
|
||||||
separator: [],
|
|
||||||
inset: 0pt,
|
|
||||||
padding: (bottom: 0.5em, top: 0.5em),
|
|
||||||
)
|
|
|
@ -774,4 +774,70 @@ us generalize to more than two colors.
|
||||||
|
|
||||||
= Discussion section #datetime(day: 22, month: 1, year: 2025).display()
|
= Discussion section #datetime(day: 22, month: 1, year: 2025).display()
|
||||||
|
|
||||||
|
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
|
||||||
|
|
||||||
|
== Independence
|
||||||
|
#definition("Independence")[
|
||||||
|
Two events $A subset Omega$ and $B subset Omega$ are independent if and only if
|
||||||
|
$ P(B sect A) = P(B)P(A) $
|
||||||
|
"Joint probability is equal to product of their marginal probabilities."
|
||||||
|
]
|
||||||
|
|
||||||
|
#fact[This definition must be used to show the independence of two events.]
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
If $A$ and $B$ are independent, then,
|
||||||
|
$
|
||||||
|
P(A | B) = underbrace((P(A sect B)) / P(B), "conditional probability") = (P(A) P(B)) / P(B) = P(A)
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Flip a fair coin 3 times. Let the events:
|
||||||
|
|
||||||
|
- $A$ = we have exactly one tails among the first 2 flips
|
||||||
|
- $B$ = we have exactly one tails among the last 2 flips
|
||||||
|
- $D$ = we get exactly one tails among all 3 flip
|
||||||
|
|
||||||
|
Show that $A$ and $B$ are independent.
|
||||||
|
What about $B$ and $D$?
|
||||||
|
|
||||||
|
Compute all of the possible events, then we see that
|
||||||
|
|
||||||
|
$
|
||||||
|
P(A sect B) = (hash (A sect B)) / (hash Omega) = 2 / 8 = 4 / 8 dot 4 / 8 = P(A) P(B)
|
||||||
|
$
|
||||||
|
|
||||||
|
So they are independent.
|
||||||
|
|
||||||
|
Repeat the same reasoning for $B$ and $D$, we see that they are not independent.
|
||||||
|
]
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Suppose we have 4 red and 7 green balls in an urn. We choose two balls with replacement. Let
|
||||||
|
|
||||||
|
- $A$ = the first ball is red
|
||||||
|
- $B$ = the second ball is greeen
|
||||||
|
|
||||||
|
Are $A$ and $B$ independent?
|
||||||
|
|
||||||
|
$
|
||||||
|
hash Omega = 11 times 11 = 121 \
|
||||||
|
hash A = 4 dot 11 = 44 \
|
||||||
|
hash B = 11 dot 7 = 77 \
|
||||||
|
hash (A sect B) = 4 dot 7 = 28
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
Events $A_1, ..., A_n$ are independent (mutually independent) if for every collection $A_i_1, ..., A_i_k$, where $2 <= k <= n$ and $1 <= i_1 < i_2 < dots.c < i_k <= n$,
|
||||||
|
|
||||||
|
$
|
||||||
|
P(A_i_1 sect A_i_2 sect dots.c sect A_i_k) = P(A_i_1) P(A_i_2) dots.c P(A_i_k)
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
We say that the events $A_1, ..., A_n$ are *pairwise independent* if any two
|
||||||
|
different events $A_i$ and $A_j$ are independent for any $i != j$.
|
||||||
|
]
|
||||||
|
|
Loading…
Reference in a new issue