auto-update(nvim): 2025-01-23 14:21:33

This commit is contained in:
Youwen Wu 2025-01-23 14:21:33 -08:00
parent f27dad47c8
commit ba14b89a35
Signed by: youwen5
GPG key ID: 865658ED1FE61EC3
3 changed files with 116 additions and 342 deletions

View file

@ -250,7 +250,7 @@ When $F(t,y)$ (RHS) is not nice (differentiable) at the initial value $(t_0,
y_0)$, existence and uniqueness (E/U) could fail. We do have E/U when $F(t,y)$ y_0)$, existence and uniqueness (E/U) could fail. We do have E/U when $F(t,y)$
is nice. is nice.
== Existence of solutions to IVT - linear case == Existence of solutions to IVP - linear case
The first order linear ODE is The first order linear ODE is
@ -339,3 +339,52 @@ $ y' = 1 / 2 cos(y) + t, y(0) = -1 $
The righthand side is nice, by @eutheorem, it has a unique solution. We can't The righthand side is nice, by @eutheorem, it has a unique solution. We can't
find an explicit solution. find an explicit solution.
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
Second order linear differential equation.
$
y'' = p(t)y' + q(t)y = g(t)
$
We say it is homogenous if $g(t) = 0$.
== Initial value problem and uniqueness on 2nd order linear ODEs
Suppose $p(t)$, $q(t)$, and $g(t)$ are given continuous functions defined on
$I$.
$
y'' = p(t)y' + q(t)y = g(t) \
y(t_0) = y_0, y'(t_0) = y'_0
$
has a unique solution $y(t)$ defined on $I$. Same as first order case. Always write in standard form first before identifying.
#example[
What is the largest interval on which the IVP
$
(t+1)y'' + y = 3, y(0) = 1, y'(0) = 0
$
is certain to have a solution?
$
y'' + 1 / (t+1) y = 3 / (t+1)
$
So the functions are nice except at -1. Our intervals are
$
(-infinity, -1), (-1, infinity)
$
But we have initial values at 0, so we know for certain that a solution (but not for certain it's the only solution) exists
$
(-1, infinity)
$
]
== 2nd order linear homogenous ODEs

View file

@ -1,341 +0,0 @@
#import "@preview/ctheorems:1.1.3": *
#import "@preview/showybox:2.0.3": showybox
#let colors = (
rgb("#9E9E9E"),
rgb("#F44336"),
rgb("#E91E63"),
rgb("#9C27B0"),
rgb("#673AB7"),
rgb("#3F51B5"),
rgb("#2196F3"),
rgb("#03A9F4"),
rgb("#00BCD4"),
rgb("#009688"),
rgb("#4CAF50"),
rgb("#8BC34A"),
rgb("#CDDC39"),
rgb("#FFEB3B"),
rgb("#FFC107"),
rgb("#FF9800"),
rgb("#FF5722"),
rgb("#795548"),
rgb("#9E9E9E"),
)
#let dvdtyp(
title: "",
subtitle: "",
author: "",
abstract: none,
bibliography: none,
paper-size: "a4",
date: "today",
body,
) = {
set document(title: title, author: author)
set std.bibliography(style: "springer-mathphys", title: [References])
show: thmrules
set page(
numbering: "1",
number-align: center,
header: locate(loc => {
if loc.page() == 1 {
return
}
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
font: "New Computer Modern",
)[
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
#h(1fr)
*#title*
]]
}),
paper: paper-size,
// The margins depend on the paper size.
margin: (
left: (86pt / 216mm) * 100%,
right: (86pt / 216mm) * 100%,
),
)
set heading(numbering: "1.")
show heading: it => {
set text(font: "Libertinus Serif")
block[
#if it.numbering != none {
text(rgb("#2196F3"), weight: 500)[#sym.section]
text(rgb("#2196F3"))[#counter(heading).display() ]
}
#it.body
#v(0.5em)
]
}
set text(font: "New Computer Modern", lang: "en")
show math.equation: set text(weight: 400)
// Title row.
align(center)[
#set text(font: "Libertinus Serif")
#block(text(weight: 700, 26pt, title))
#if subtitle != none [#text(12pt, weight: 500)[#(
subtitle
)]]
#if author != none [#text(16pt)[#smallcaps(author)]]
#v(1.2em, weak: true)
#if date == "today" {
datetime.today().display("[day] [month repr:long] [year]")
} else {
date
}
]
if abstract != none [
#v(2.2em)
#set text(font: "Libertinus Serif")
#pad(x: 14%, abstract)
#v(1em)
]
set outline(fill: repeat[~.], indent: 1em)
show outline: set heading(numbering: none)
show outline: set par(first-line-indent: 0em)
show outline.entry.where(level: 1): it => {
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
}
show outline.entry: it => {
h(1em)
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
}
// Main body.
set par(
justify: true,
spacing: 0.65em,
first-line-indent: 2em,
)
body
// Display the bibliography, if any is given.
if bibliography != none {
show std.bibliography: set text(footnote-size)
show std.bibliography: set block(above: 11pt)
show std.bibliography: pad.with(x: 0.5pt)
bibliography
}
}
#let thmtitle(t, color: rgb("#000000")) = {
return text(
font: "Libertinus Serif",
weight: "semibold",
fill: color,
)[#t]
}
#let thmname(t, color: rgb("#000000")) = {
return text(font: "Libertinus Serif", fill: color)[(#t)]
}
#let thmtext(t, color: rgb("#000000")) = {
let a = t.children
if (a.at(0) == [ ]) {
a.remove(0)
}
t = a.join()
return text(font: "New Computer Modern", fill: color)[#t]
}
#let thmbase(
identifier,
head,
..blockargs,
supplement: auto,
padding: (top: 0.5em, bottom: 0.5em),
namefmt: x => [(#x)],
titlefmt: strong,
bodyfmt: x => x,
separator: [. \ ],
base: "heading",
base_level: none,
) = {
if supplement == auto {
supplement = head
}
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
if not name == none {
name = [ #namefmt(name)]
} else {
name = []
}
if title == auto {
title = head
}
if not number == none {
title += " " + number
}
title = titlefmt(title)
body = [#pad(top: 2pt, bodyfmt(body))]
pad(
..padding,
showybox(
width: 100%,
radius: 0.3em,
breakable: true,
padding: (top: 0em, bottom: 0em),
..blockargs.named(),
..blockargs_individual.named(),
[
#title#name#titlefmt(separator)#body
],
),
)
}
let auxthmenv = thmenv(
identifier,
base,
base_level,
boxfmt,
).with(supplement: supplement)
return auxthmenv.with(numbering: "1.1")
}
#let styled-thmbase = thmbase.with(
titlefmt: thmtitle,
namefmt: thmname,
bodyfmt: thmtext,
)
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
titlefmt: thmtitle.with(color: color.darken(30%)),
bodyfmt: thmtext.with(color: color.darken(70%)),
namefmt: thmname.with(color: color.darken(30%)),
frame: (
body-color: color.lighten(92%),
border-color: color.darken(10%),
thickness: 1.5pt,
inset: 1.2em,
radius: 0.3em,
),
..builderargs,
)
#let builder-thmline(
color: rgb("#000000"),
..builderargs,
) = styled-thmbase.with(
titlefmt: thmtitle.with(color: color.darken(30%)),
bodyfmt: thmtext.with(color: color.darken(70%)),
namefmt: thmname.with(color: color.darken(30%)),
frame: (
body-color: color.lighten(92%),
border-color: color.darken(10%),
thickness: (left: 2pt),
inset: 1.2em,
radius: 0em,
),
..builderargs,
)
#let problem-style = builder-thmbox(
color: colors.at(11),
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
)
#let exercise = problem-style("item", "Exercise")
#let problem = exercise
#let theorem-style = builder-thmbox(
color: colors.at(6),
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
)
#let example-style = builder-thmbox(
color: colors.at(16),
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
)
#let theorem = theorem-style("item", "Theorem")
#let lemma = theorem-style("item", "Lemma")
#let corollary = theorem-style("item", "Corollary")
#let definition-style = builder-thmline(color: colors.at(8))
// #let definition = definition-style("definition", "Definition")
#let proposition = definition-style("item", "Proposition")
#let remark = definition-style("item", "Remark")
#let observation = definition-style("item", "Observation")
// #let example-style = builder-thmline(color: colors.at(16))
#let example = example-style("item", "Example")
#let proof(body, name: none) = {
v(0.5em)
[_Proof_]
if name != none {
[ #thmname[#name]]
}
[.]
body
h(1fr)
// Add a word-joiner so that the proof square and the last word before the
// 1fr spacing are kept together.
sym.wj
// Add a non-breaking space to ensure a minimum amount of space between the
// text and the proof square.
sym.space.nobreak
$square.stroked$
v(0.5em)
}
#let fact = thmplain(
"item",
"Fact",
titlefmt: content => [*#content.*],
namefmt: content => [_(#content)._],
separator: [],
inset: 0pt,
padding: (bottom: 0.5em, top: 0.5em),
)
#let abuse = thmplain(
"item",
"Abuse of Notation",
titlefmt: content => [*#content.*],
namefmt: content => [_(#content)._],
separator: [],
inset: 0pt,
padding: (bottom: 0.5em, top: 0.5em),
)
#let definition = thmplain(
"item",
"Definition",
titlefmt: content => [*#content.*],
namefmt: content => [_(#content)._],
separator: [],
inset: 0pt,
padding: (bottom: 0.5em, top: 0.5em),
)

View file

@ -774,4 +774,70 @@ us generalize to more than two colors.
= Discussion section #datetime(day: 22, month: 1, year: 2025).display() = Discussion section #datetime(day: 22, month: 1, year: 2025).display()
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
== Independence
#definition("Independence")[
Two events $A subset Omega$ and $B subset Omega$ are independent if and only if
$ P(B sect A) = P(B)P(A) $
"Joint probability is equal to product of their marginal probabilities."
]
#fact[This definition must be used to show the independence of two events.]
#fact[
If $A$ and $B$ are independent, then,
$
P(A | B) = underbrace((P(A sect B)) / P(B), "conditional probability") = (P(A) P(B)) / P(B) = P(A)
$
]
#example[
Flip a fair coin 3 times. Let the events:
- $A$ = we have exactly one tails among the first 2 flips
- $B$ = we have exactly one tails among the last 2 flips
- $D$ = we get exactly one tails among all 3 flip
Show that $A$ and $B$ are independent.
What about $B$ and $D$?
Compute all of the possible events, then we see that
$
P(A sect B) = (hash (A sect B)) / (hash Omega) = 2 / 8 = 4 / 8 dot 4 / 8 = P(A) P(B)
$
So they are independent.
Repeat the same reasoning for $B$ and $D$, we see that they are not independent.
]
#example[
Suppose we have 4 red and 7 green balls in an urn. We choose two balls with replacement. Let
- $A$ = the first ball is red
- $B$ = the second ball is greeen
Are $A$ and $B$ independent?
$
hash Omega = 11 times 11 = 121 \
hash A = 4 dot 11 = 44 \
hash B = 11 dot 7 = 77 \
hash (A sect B) = 4 dot 7 = 28
$
]
#definition[
Events $A_1, ..., A_n$ are independent (mutually independent) if for every collection $A_i_1, ..., A_i_k$, where $2 <= k <= n$ and $1 <= i_1 < i_2 < dots.c < i_k <= n$,
$
P(A_i_1 sect A_i_2 sect dots.c sect A_i_k) = P(A_i_1) P(A_i_2) dots.c P(A_i_k)
$
]
#definition[
We say that the events $A_1, ..., A_n$ are *pairwise independent* if any two
different events $A_i$ and $A_j$ are independent for any $i != j$.
]