auto-update(nvim): 2025-02-19 04:32:27
This commit is contained in:
parent
133d84b018
commit
bceed18c04
2 changed files with 239 additions and 0 deletions
202
documents/by-course/math-8/pset-6/main.typ
Normal file
202
documents/by-course/math-8/pset-6/main.typ
Normal file
|
@ -0,0 +1,202 @@
|
|||
#import "@youwen/zen:0.1.0": *
|
||||
#import "@preview/mitex:0.2.5": *
|
||||
|
||||
#show: zen.with(
|
||||
title: "Homework 6",
|
||||
author: "Youwen Wu",
|
||||
)
|
||||
|
||||
#set heading(numbering: none)
|
||||
#show heading.where(level: 2): it => [#it.body.]
|
||||
#show heading.where(level: 3): it => [#it.body.]
|
||||
|
||||
#set par(first-line-indent: 0pt, spacing: 1em)
|
||||
|
||||
|
||||
Problems:
|
||||
|
||||
3.1: \#2, 3bd, 5ab, 6b, 7ae, 8ef, 11a
|
||||
|
||||
3.2: \#1dfg, 6bcdi, 7
|
||||
|
||||
3.3: \#2ace, 3a, 7ac, 9d
|
||||
|
||||
#outline()
|
||||
|
||||
= 3.1
|
||||
|
||||
== 2
|
||||
|
||||
=== a
|
||||
|
||||
$"Dom"(T) = {3,2,1}$
|
||||
|
||||
=== b
|
||||
|
||||
$"Rng"(T) = {1,2,3,5,6}$
|
||||
|
||||
=== c
|
||||
|
||||
$T^(-1) = {(1,3), (3,2), (5,3), (2,2), (6,1), (6,2), (2,1)}$
|
||||
|
||||
=== d
|
||||
|
||||
$T = {(3,1), (2,3), (3,5), (2,2), (1,6), (2,6), (1,2)}$
|
||||
|
||||
== 3
|
||||
|
||||
=== b
|
||||
|
||||
$
|
||||
"Dom"(W) = RR \
|
||||
"Rng"(W) = RR
|
||||
$
|
||||
|
||||
=== d
|
||||
|
||||
$
|
||||
"Dom"(W) = (-infinity,0)union(0,infinity) \
|
||||
"Rng"(W) = (-infinity,0)union(0,infinity)
|
||||
$
|
||||
|
||||
== 5
|
||||
|
||||
=== a
|
||||
|
||||
Consider all $x in RR$. Then there is a $y in RR$ such that $x R y$, namely $y
|
||||
= 6x$. Now consider all $y in RR$. Then there is an $x in RR$ such that $x R
|
||||
y$, namely $x = y/6$.
|
||||
|
||||
=== b
|
||||
|
||||
Consider all $x in RR$. Then $x^2$ is either positive or zero. So all $y$ such
|
||||
that $x R y$ are in $[0,infinity)$. So the range is $[0,infinity)$. Now
|
||||
consider all $y in [0,infinity)$ such that $x R y$. Then we can always find an
|
||||
$x in RR$ such that $x = sqrt(y)$ as $y$ is not negative. So the domain is $RR$.
|
||||
|
||||
== 6
|
||||
|
||||
=== b
|
||||
|
||||
$
|
||||
R_2^(-1) = {(x,y) in RR times RR : y = -1 / 5 (x-2)}
|
||||
$
|
||||
|
||||
== 7
|
||||
|
||||
=== a
|
||||
|
||||
$
|
||||
R compose S = {(3,5),(5,2)}
|
||||
$
|
||||
|
||||
=== e
|
||||
|
||||
$
|
||||
S compose R = {(1,5),(2,4),(5,4)}
|
||||
$
|
||||
|
||||
== 8
|
||||
|
||||
=== e
|
||||
|
||||
$
|
||||
R_2 compose R_4 &= {(x,y) in RR times RR : y = -5(x^2 + 2) + 2} \
|
||||
&= {(x,y) in RR times RR : y = -5x^2 - 8}
|
||||
$
|
||||
|
||||
=== f
|
||||
|
||||
$
|
||||
R_4 compose R_2 &= {(x,y) in RR times RR : (-5x+2)^2 + 2} \
|
||||
&= {(x,y) in RR times RR : 25x^2 - 10x + 6}
|
||||
$
|
||||
|
||||
== 11
|
||||
|
||||
=== a
|
||||
|
||||
The domain of $R$ is simply all of the first coordinates and the range of
|
||||
$R^(-1)$ is all of the second coordinates of $R^(-1)$. But by the definition of
|
||||
$R^(-1)$ all of its second coordinates are the first coordinates of $R$.
|
||||
|
||||
More formally, $a in "Dom"(R)$ iff. there exists $a in A$ such that $(a,b) in
|
||||
R$ iff. there exists a $(b,a) in R^(-1)$ for every $(a,b) in R$ iff. $a in
|
||||
"Rng"(R^(-1))$. Since $a in "Dom"(R) <=> a in "Rng"(R^(-1))$ they are equal.
|
||||
|
||||
= 3.2
|
||||
|
||||
== 1
|
||||
|
||||
=== d
|
||||
|
||||
Transitive, but not reflexive or symmetric.
|
||||
|
||||
=== f
|
||||
|
||||
Symmetric only.
|
||||
|
||||
=== g
|
||||
|
||||
Transitive and reflexive but not symmetric.
|
||||
|
||||
== 6
|
||||
|
||||
=== b
|
||||
|
||||
For natural numbers $m$ and $m$, both have the same digit in the tens place. So
|
||||
$R$ is reflexive. If natural numbers $m$ and $n$ have the same digit in the
|
||||
tens place, then $n$ and $m$ have the same digit in the tens place. So $R$ is
|
||||
symmetric. Finally, if naturals $n$ and $m$ have the same digit in the tens
|
||||
place, and naturals $m$ and $p$ have the same digit in the tens place, than $n$
|
||||
and $p$ have the same digit in the tens place. So the relation $R$ is
|
||||
reflexive, symmetric, and transitive, so it's an equivalence relation on $NN$.
|
||||
|
||||
An element of $overline(106)$ less than 50 is 05. Between 150 and 300 is 250.
|
||||
Greater than 1000 is 2000. Three such elements in the equivalence class
|
||||
$overline(635)$ are 35, 235, and 1035.
|
||||
|
||||
=== c
|
||||
|
||||
For $x in RR$, x = x. So $V$ is reflexive. For $x,y in RR$, if $x = y$, then $y
|
||||
= x$, or if $x y = 1$, then $y x = 1$ by the commutativity of multiplication.
|
||||
So $V$ is symmetric. For $x,y,z in RR$, if $x = y$ and $y = z$, then $x = z$.
|
||||
|
||||
If $x y = 1$ and $y z = 1$, then either
|
||||
|
||||
1. $y = 1$ which implies $x = 1$ and $z = 1$ so $x z = 1$ and $x V z$.
|
||||
2. $y != 1$ and $x = 1/y$ and $z = 1/y$ and we have $x =
|
||||
z$ so $x V z$.
|
||||
|
||||
So the relation is reflexive, symmetric, and transitive, and it's an
|
||||
equivalence relation.
|
||||
|
||||
- the equivalence class of 3, $overline(3)$ is ${3, 1/3}$
|
||||
- the equivalence class of $-2/3$, $overline(-2/3)$ is ${-2/3, -3/2}$
|
||||
- the equivalence class of $0$, $overline(0)$, is just ${0}$
|
||||
|
||||
=== d
|
||||
|
||||
For any $a$, $a$ has a unique prime factorization so $a R a$. So $R$ is
|
||||
reflexive. If $a R b$, then $b R a$ since $a$ and $b$ have unique prime
|
||||
factorizations and have the same amount of twos in their unique prime factors.
|
||||
So $R$ is symmetric. If $a R b$, and $b R c$, then the unique prime
|
||||
factorization of $a$ has the same amount of 2s as the prime factorization of
|
||||
$b$ which has the same amount of 2s as the prime factorization of $c$. So $a$
|
||||
and $c$ have the same amount of 2s in their prime factorization and $a R c$. So $R$ is transitive. Therefore $R$ is an equivalence relation.
|
||||
|
||||
- In $overline(7)$, we have no 2s in the prime factorization, ${3,5,9} subset overline(7)$
|
||||
- In $overline(10)$, there is one 2, so ${4,6,14} subset overline(10)$
|
||||
- In $overline(72)$, there are three 2s, so ${8, 24, 40} subset overline(72)$
|
||||
|
||||
=== i
|
||||
|
||||
For any $x in RR$, $x T x$ iff. $sin(x) = sin(x)$ which is true, so $T$ is
|
||||
reflexive. For $x, y in RR$, $x T y$ iff. $sin(x) = sin(y)$ iff. $sin(y) =
|
||||
sin(x)$ iff. $y T x$. So $T$ is symmetric. For $x,y,z in RR$, $x T y$ and $y T
|
||||
z$ iff. $sin(x) = sin(y)$ and $sin(y) = sin(z)$ iff. $sin(x) = sin(z)$ iff. $x
|
||||
T z$ so $T$ is transitive. Therefore $T$ is an equivalence relation on $RR$.
|
||||
|
||||
- $overline(0)$ is given by all $y in RR$ where $sin(y) = 0$, so ${pi n : n in ZZ}$
|
||||
- $overline(pi/2)$ is given by all $y in RR$ where $sin(y) = sin(pi/2) = 1$, so ${pi/2 + 2pi n : n in ZZ}$
|
||||
- $overline(pi/4)$ is given by all $y in RR$ where $sin(y) = sin(pi/4)$, so ${pi/4 + 2pi n, (3pi)/4 + 2pi n : n in ZZ}$
|
37
documents/by-course/math-8/pset-6/package.nix
Normal file
37
documents/by-course/math-8/pset-6/package.nix
Normal file
|
@ -0,0 +1,37 @@
|
|||
{
|
||||
pkgs,
|
||||
typstPackagesCache,
|
||||
typixLib,
|
||||
cleanTypstSource,
|
||||
flakeSelf,
|
||||
...
|
||||
}:
|
||||
let
|
||||
src = cleanTypstSource ./.;
|
||||
commonArgs = {
|
||||
typstSource = "main.typ";
|
||||
|
||||
fontPaths = [
|
||||
# Add paths to fonts here
|
||||
# "${pkgs.roboto}/share/fonts/truetype"
|
||||
];
|
||||
|
||||
virtualPaths = [
|
||||
# Add paths that must be locally accessible to typst here
|
||||
# {
|
||||
# dest = "icons";
|
||||
# src = "${inputs.font-awesome}/svgs/regular";
|
||||
# }
|
||||
];
|
||||
|
||||
XDG_CACHE_HOME = typstPackagesCache;
|
||||
SOURCE_DATE_EPOCH = builtins.toString flakeSelf.lastModified;
|
||||
};
|
||||
|
||||
in
|
||||
typixLib.buildTypstProject (
|
||||
commonArgs
|
||||
// {
|
||||
inherit src;
|
||||
}
|
||||
)
|
Loading…
Reference in a new issue