From bd81364613bddb115c5a4ea44bc545a83c223da3 Mon Sep 17 00:00:00 2001 From: Youwen Wu Date: Sat, 18 Jan 2025 00:23:11 -0800 Subject: [PATCH] auto-update(nvim): 2025-01-18 00:23:11 --- .../by-course/math-8/course-notes/dvd.typ | 341 ------------------ .../by-course/math-8/course-notes/main.typ | 49 ++- 2 files changed, 45 insertions(+), 345 deletions(-) delete mode 100644 documents/by-course/math-8/course-notes/dvd.typ diff --git a/documents/by-course/math-8/course-notes/dvd.typ b/documents/by-course/math-8/course-notes/dvd.typ deleted file mode 100644 index 06deb27..0000000 --- a/documents/by-course/math-8/course-notes/dvd.typ +++ /dev/null @@ -1,341 +0,0 @@ -#import "@preview/ctheorems:1.1.3": * -#import "@preview/showybox:2.0.3": showybox - -#let colors = ( - rgb("#9E9E9E"), - rgb("#F44336"), - rgb("#E91E63"), - rgb("#9C27B0"), - rgb("#673AB7"), - rgb("#3F51B5"), - rgb("#2196F3"), - rgb("#03A9F4"), - rgb("#00BCD4"), - rgb("#009688"), - rgb("#4CAF50"), - rgb("#8BC34A"), - rgb("#CDDC39"), - rgb("#FFEB3B"), - rgb("#FFC107"), - rgb("#FF9800"), - rgb("#FF5722"), - rgb("#795548"), - rgb("#9E9E9E"), -) - -#let dvdtyp( - title: "", - subtitle: "", - author: "", - abstract: none, - bibliography: none, - paper-size: "a4", - date: "today", - body, -) = { - set document(title: title, author: author) - - set std.bibliography(style: "springer-mathphys", title: [References]) - - show: thmrules - - set page( - numbering: "1", - number-align: center, - header: locate(loc => { - if loc.page() == 1 { - return - } - box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text( - font: "New Computer Modern", - )[ - *#author* --- #datetime.today().display("[day] [month repr:long] [year]") - #h(1fr) - *#title* - ]] - }), - paper: paper-size, - // The margins depend on the paper size. - margin: ( - left: (86pt / 216mm) * 100%, - right: (86pt / 216mm) * 100%, - ), - ) - - - set heading(numbering: "1.") - show heading: it => { - set text(font: "Libertinus Serif") - - block[ - #if it.numbering != none { - text(rgb("#2196F3"), weight: 500)[#sym.section] - - text(rgb("#2196F3"))[#counter(heading).display() ] - } - #it.body - #v(0.5em) - ] - } - - set text(font: "New Computer Modern", lang: "en") - - show math.equation: set text(weight: 400) - - - // Title row. - align(center)[ - #set text(font: "Libertinus Serif") - #block(text(weight: 700, 26pt, title)) - - - #if subtitle != none [#text(12pt, weight: 500)[#( - subtitle - )]] - - #if author != none [#text(16pt)[#smallcaps(author)]] - #v(1.2em, weak: true) - - #if date == "today" { - datetime.today().display("[day] [month repr:long] [year]") - } else { - date - } - - ] - - if abstract != none [ - #v(2.2em) - #set text(font: "Libertinus Serif") - #pad(x: 14%, abstract) - #v(1em) - ] - - set outline(fill: repeat[~.], indent: 1em) - - show outline: set heading(numbering: none) - show outline: set par(first-line-indent: 0em) - - show outline.entry.where(level: 1): it => { - text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]] - } - show outline.entry: it => { - h(1em) - text(font: "Libertinus Serif", rgb("#2196F3"))[#it] - } - - - // Main body. - set par( - justify: true, - spacing: 0.65em, - first-line-indent: 2em, - ) - - body - - // Display the bibliography, if any is given. - if bibliography != none { - show std.bibliography: set text(footnote-size) - show std.bibliography: set block(above: 11pt) - show std.bibliography: pad.with(x: 0.5pt) - bibliography - } -} - -#let thmtitle(t, color: rgb("#000000")) = { - return text( - font: "Libertinus Serif", - weight: "semibold", - fill: color, - )[#t] -} -#let thmname(t, color: rgb("#000000")) = { - return text(font: "Libertinus Serif", fill: color)[(#t)] -} - -#let thmtext(t, color: rgb("#000000")) = { - let a = t.children - if (a.at(0) == [ ]) { - a.remove(0) - } - t = a.join() - - return text(font: "New Computer Modern", fill: color)[#t] -} - -#let thmbase( - identifier, - head, - ..blockargs, - supplement: auto, - padding: (top: 0.5em, bottom: 0.5em), - namefmt: x => [(#x)], - titlefmt: strong, - bodyfmt: x => x, - separator: [. \ ], - base: "heading", - base_level: none, -) = { - if supplement == auto { - supplement = head - } - let boxfmt(name, number, body, title: auto, ..blockargs_individual) = { - if not name == none { - name = [ #namefmt(name)] - } else { - name = [] - } - if title == auto { - title = head - } - if not number == none { - title += " " + number - } - title = titlefmt(title) - body = [#pad(top: 2pt, bodyfmt(body))] - pad( - ..padding, - showybox( - width: 100%, - radius: 0.3em, - breakable: true, - padding: (top: 0em, bottom: 0em), - ..blockargs.named(), - ..blockargs_individual.named(), - [ - #title#name#titlefmt(separator)#body - ], - ), - ) - } - - let auxthmenv = thmenv( - identifier, - base, - base_level, - boxfmt, - ).with(supplement: supplement) - - return auxthmenv.with(numbering: "1.1") -} - -#let styled-thmbase = thmbase.with( - titlefmt: thmtitle, - namefmt: thmname, - bodyfmt: thmtext, -) - -#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with( - titlefmt: thmtitle.with(color: color.darken(30%)), - bodyfmt: thmtext.with(color: color.darken(70%)), - namefmt: thmname.with(color: color.darken(30%)), - frame: ( - body-color: color.lighten(92%), - border-color: color.darken(10%), - thickness: 1.5pt, - inset: 1.2em, - radius: 0.3em, - ), - ..builderargs, -) - -#let builder-thmline( - color: rgb("#000000"), - ..builderargs, -) = styled-thmbase.with( - titlefmt: thmtitle.with(color: color.darken(30%)), - bodyfmt: thmtext.with(color: color.darken(70%)), - namefmt: thmname.with(color: color.darken(30%)), - frame: ( - body-color: color.lighten(92%), - border-color: color.darken(10%), - thickness: (left: 2pt), - inset: 1.2em, - radius: 0em, - ), - ..builderargs, -) - -#let problem-style = builder-thmbox( - color: colors.at(11), - shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)), -) - -#let exercise = problem-style("item", "Exercise") -#let problem = exercise - -#let theorem-style = builder-thmbox( - color: colors.at(6), - shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)), -) - -#let example-style = builder-thmbox( - color: colors.at(16), - shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)), -) - -#let theorem = theorem-style("item", "Theorem") -#let lemma = theorem-style("item", "Lemma") -#let corollary = theorem-style("item", "Corollary") - -#let definition-style = builder-thmline(color: colors.at(8)) - -// #let definition = definition-style("definition", "Definition") -#let proposition = definition-style("item", "Proposition") -#let remark = definition-style("item", "Remark") -#let observation = definition-style("item", "Observation") - -// #let example-style = builder-thmline(color: colors.at(16)) - -#let example = example-style("item", "Example") - -#let proof(body, name: none) = { - v(0.5em) - [_Proof_] - if name != none { - [ #thmname[#name]] - } - [.] - body - h(1fr) - - // Add a word-joiner so that the proof square and the last word before the - // 1fr spacing are kept together. - sym.wj - - // Add a non-breaking space to ensure a minimum amount of space between the - // text and the proof square. - sym.space.nobreak - - $square.stroked$ - v(0.5em) -} - -#let fact = thmplain( - "item", - "Fact", - titlefmt: content => [*#content.*], - namefmt: content => [_(#content)._], - separator: [], - inset: 0pt, - padding: (bottom: 0.5em, top: 0.5em), -) -#let abuse = thmplain( - "item", - "Abuse of Notation", - titlefmt: content => [*#content.*], - namefmt: content => [_(#content)._], - separator: [], - inset: 0pt, - padding: (bottom: 0.5em, top: 0.5em), -) -#let definition = thmplain( - "item", - "Definition", - titlefmt: content => [*#content.*], - namefmt: content => [_(#content)._], - separator: [], - inset: 0pt, - padding: (bottom: 0.5em, top: 0.5em), -) diff --git a/documents/by-course/math-8/course-notes/main.typ b/documents/by-course/math-8/course-notes/main.typ index c2c92e2..77272e9 100644 --- a/documents/by-course/math-8/course-notes/main.typ +++ b/documents/by-course/math-8/course-notes/main.typ @@ -1,6 +1,6 @@ -#import "./dvd.typ": * +#import "@youwen/zen:0.1.0": * -#show: dvdtyp.with( +#show: zen.with( title: "Math 8 Course Notes", author: "Youwen Wu", date: "Winter 2025", @@ -308,13 +308,31 @@ $ P => Q and Q => P $ #theorem("Fundamental Theorem of Arithmetic")[ $forall x in ZZ, x > 1$, $x$ can be written as a product of prime factors. + Additionally, these prime factors are unique, i.e. there is only one set of + prime factors that uniquely factorizes $x$. Hence it is sometimes called the + _unique factorization theorem_ or the _prime factorization theorem_. ] #example[ Assume $p$ is prime. Then $p | b$ iff $p | b^2$. #proof[ + First let us show $p | b => p | b^2$. We know $b$ can be written as the + product of the prime $p$ and some other integer $n$. + $ b = p n $ + Then + $ b^2 = p^2 n^2 $ + which implies $p$ is a factor of and divides $b^2$. So, + $ p | b => p | b^2 $ + Now let us show the converse, i.e. $p | b^2 => p | b$. + + By the unique factorization theorem, $b^2$ can be written as a unique + product of primes, one of which is $p$. But we also know $b^2 = b dot b$ + and so at least one $b$ must have a prime factor $p$. But $b$ has unique + prime factors (again by the same theorem) so $b$ always has a prime factor + $p$. Hence, + $ p | b^2 => p | b $ ] ] @@ -391,9 +409,14 @@ non-perfect square is irrational. Show that $sqrt(15)$ is irrational. ] -#exercise("Euclid's Theorem")[ +#problem("Euclid's Theorem")[ Show that there are an infinite amount of prime numbers. -] +] + +#problem[ + Show that in general, given any integer $n$ that is not a perfect square, + i.e. $ exists.not a in ZZ, n = a^2 $ $sqrt(n)$ is irrational. +] == Proofs involving quantifiers @@ -443,3 +466,21 @@ $ exists x in U, P(x) $ Prove that between any two rational numbers $x$ and $y$ there is another rational number $z$. ] + +== Solutions + +Solutions to selected problems and exercises. + +#linebreak() + +*@euclid.* We begin by considering primes $p_1, p_2, ..., p_n$. Let $P = p_1 dot p_2 dot ... dot p_n$. Then let $q = P + 1$. + +Then if $q$ is prime, we have an additional prime not in the original list. + +Otherwise, $q$ is not prime and we have a unique prime factorization of $q$. +Without loss of generality, take one such prime to be $p_k$. $p_k$ cannot be in +the original list $p_1, p_2, ..., p_n$. + +If $p_k$ were in the original list, then since $P$ is divisible by $p_k$, and $P ++ 1$ is also divisible by $p_k$, 1 must be divisible by $p_k$ which is +impossible. So $p_k$ is a new prime.