auto-update(nvim): 2025-01-07 01:00:54
This commit is contained in:
parent
15f7d08901
commit
f854b9ba88
3 changed files with 282 additions and 10 deletions
|
@ -286,14 +286,23 @@
|
|||
#let example = example-style("item", "Example")
|
||||
|
||||
#let proof(body, name: none) = {
|
||||
thmtitle[Proof]
|
||||
[_Proof_]
|
||||
if name != none {
|
||||
[ #thmname[#name]]
|
||||
}
|
||||
thmtitle[.]
|
||||
[.]
|
||||
body
|
||||
h(1fr)
|
||||
$square$
|
||||
|
||||
// Add a word-joiner so that the proof square and the last word before the
|
||||
// 1fr spacing are kept together.
|
||||
sym.wj
|
||||
|
||||
// Add a non-breaking space to ensure a minimum amount of space between the
|
||||
// text and the proof square.
|
||||
sym.space.nobreak
|
||||
|
||||
$square.stroked$
|
||||
}
|
||||
|
||||
#let fact = thmplain(
|
||||
|
|
|
@ -103,7 +103,258 @@ Problems:
|
|||
[F], [F], [T], [F], [T], [T],
|
||||
[F], [F], [F], [F], [F], [F],
|
||||
)
|
||||
] \
|
||||
h. $not P and not Q$
|
||||
#table(
|
||||
align: center,
|
||||
columns: 5,
|
||||
[$P$], [$Q$], [$not P$], [$not Q$], [$not P and not Q$],
|
||||
[T], [T], [F], [F], [F],
|
||||
[T], [F], [F], [T], [F],
|
||||
[F], [T], [T], [F], [F],
|
||||
[F], [F], [T], [T], [T],
|
||||
) \
|
||||
j. $(P and Q) or (P and R)$
|
||||
#table(
|
||||
align: center,
|
||||
columns: 6,
|
||||
[$P$], [$Q$], [$R$], [$P and Q$], [$P and R$], [$(P and Q) or (P and R)$],
|
||||
[T], [T], [T], [T], [T], [T],
|
||||
[T], [F], [T], [F], [T], [T],
|
||||
[T], [T], [F], [T], [F], [T],
|
||||
[T], [F], [F], [F], [F], [F],
|
||||
[F], [T], [T], [F], [F], [F],
|
||||
[F], [F], [T], [F], [F], [F],
|
||||
[F], [T], [F], [F], [F], [F],
|
||||
[F], [F], [F], [F], [F], [F],
|
||||
) \
|
||||
L. $(P and Q) or (P and not S)$
|
||||
#table(
|
||||
align: center,
|
||||
columns: 7,
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$S$],
|
||||
[$not S$],
|
||||
[$P and Q$],
|
||||
[$P and not S$],
|
||||
[$(P and Q) or (P and not S)$],
|
||||
|
||||
[T], [T], [T], [F], [T], [F], [T],
|
||||
[T], [F], [T], [F], [F], [F], [F],
|
||||
[T], [T], [F], [T], [T], [T], [T],
|
||||
[T], [F], [F], [T], [F], [T], [T],
|
||||
[F], [T], [T], [F], [F], [F], [F],
|
||||
[F], [F], [T], [F], [F], [F], [F],
|
||||
[F], [T], [F], [T], [F], [F], [F],
|
||||
[F], [F], [F], [T], [F], [F], [F],
|
||||
)
|
||||
|
||||
4. \
|
||||
c. $(P or Q) and (R or S)$ is true. \
|
||||
d. $(not P or not Q) or (not R or not S)$ is true. \
|
||||
e. $not P or not Q$ is false. \
|
||||
f. $(not Q or S) and (Q or S)$ is false. \
|
||||
h. $K and not (S or Q)$ is false.
|
||||
|
||||
6. \
|
||||
a. $not P and not Q$, $not (P and not Q)$ are not equivalent because we can choose $P$ and $Q$ to both be true which gives false for proposition 1 and true for proposition 2. \
|
||||
b. $(not P) or (not Q), not (P or not Q)$ are not equivalent because we can choose $P$ to be true and $Q$ to be false, and proposition 1 is true while proposition 2 is false. \
|
||||
c. $(P and Q) or R$, $P and (Q or R)$ are not equivalent, by a truth table.
|
||||
|
||||
#proof[
|
||||
Direct computation, by a truth table. Hopefully this suffices to show the absurdity of computing nontrivial boolean results by truth table.
|
||||
#table(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr, 1fr, 1fr, 2fr, 2fr),
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$R$],
|
||||
[$P and Q$],
|
||||
[$Q or R$],
|
||||
[$(P and Q) or R$],
|
||||
[$P and (Q or R)$],
|
||||
|
||||
[T], [T], [T], [T], [T], [T], [T],
|
||||
[T], [F], [T], [F], [T], [T], [T],
|
||||
[T], [T], [F], [F], [T], [T], [T],
|
||||
[T], [F], [F], [F], [F], [F], [F],
|
||||
[F], [T], [T], [F], [T], [T], [F],
|
||||
[F], [F], [T], [], [], [], [],
|
||||
[F], [T], [F], [], [], [], [],
|
||||
[F], [F], [F], [], [], [], [],
|
||||
)
|
||||
|
||||
We need not complete the table as we have already identified a contradiction for when $P$ and $Q$ are false, $R$ true.
|
||||
]
|
||||
|
||||
#remark(numbering: none)[
|
||||
We can also show this result directly by
|
||||
|
||||
$
|
||||
(P and Q) or R &= (P or R) and (Q or R) \
|
||||
P and (Q or R) &= (P or Q) and (P or R)
|
||||
$
|
||||
|
||||
Clearly the choices of $P$ and $Q$ are false, $R$ is true again yields a contradictory result where proposition 1 is true while proposition 2 is false.
|
||||
]
|
||||
|
||||
d. $not (P and Q), not P and not Q$ \
|
||||
|
||||
The statements are not equivalent.
|
||||
|
||||
#proof[
|
||||
By DeMorgan's,
|
||||
$ not (P and Q) = not P or not Q $
|
||||
Therefore, choosing $P,Q$ with $P != Q$ gives a contradictory result between the two propositions.
|
||||
]
|
||||
|
||||
e. $(P and Q) or R, P or (Q and R)$
|
||||
|
||||
They are not equivalent.
|
||||
|
||||
#proof[
|
||||
Symbolic manipulation gives
|
||||
$
|
||||
(P and Q) or R &= (P or R) and (Q or R) \
|
||||
P or (Q and R) &= (P or Q) and (P or R)
|
||||
$
|
||||
Then select the conjunctive statement in parentheses that occurs
|
||||
exclusively in one of the statements and set both of its propositions to
|
||||
false. In this case we take $Q$ and $R$ false while $P$ is true, which
|
||||
makes proposition 1 false while proposition 2 is true.
|
||||
]
|
||||
|
||||
f. $(P and Q) or P, P$
|
||||
|
||||
They are equivalent, trivially. Clearly $Q$ is independent of the outcome's truth value which only depends on $P$.
|
||||
|
||||
7. \
|
||||
|
||||
c. Julius Caesar was born in 1492 or 1493 and died in 1776. \
|
||||
|
||||
This proposition is of the form $(P or Q) and R$, where
|
||||
|
||||
$
|
||||
P &= #[Caesar was born in 1492] \
|
||||
Q &= #[Caesar was born in 1493] \
|
||||
R &= #[Caesar died in 1776] \
|
||||
$
|
||||
|
||||
It is false, clearly, as Caesar certainly could not have died in 1776.
|
||||
|
||||
g. It is not the case that $-5$ and $13$ are elements of $NN$, but $4$ is in the set of rational numbers.
|
||||
|
||||
This proposition takes the form $not (P and Q) and R$, where
|
||||
|
||||
$
|
||||
P &= -5 in NN \
|
||||
Q &= 13 in NN \
|
||||
R &= 4 in QQ
|
||||
$
|
||||
|
||||
It is true, since $P$ is false, $Q$ is true, $R$ is true, which implies $not
|
||||
(P and Q)$ is true, thus making the proposition as a whole true.
|
||||
|
||||
10. \
|
||||
c. $(P and Q) or (not P or not Q)$ \
|
||||
|
||||
This is a tautology that is true $forall P,Q$.
|
||||
|
||||
#proof[
|
||||
#table(
|
||||
align: center,
|
||||
columns: 5,
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$P and Q$],
|
||||
[$not P or not Q$],
|
||||
[$(P and Q) or (not P or not Q)$],
|
||||
|
||||
[T], [T], [T], [F], [T],
|
||||
[T], [F], [F], [T], [T],
|
||||
[F], [T], [F], [T], [T],
|
||||
[F], [F], [T], [T], [T],
|
||||
)
|
||||
]
|
||||
|
||||
e. $(Q and not P) and not (P and R)$ \
|
||||
|
||||
This is neither a tautology nor a contradiction.
|
||||
|
||||
#proof[
|
||||
#table(
|
||||
align: center,
|
||||
columns: 5,
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$Q and not P$],
|
||||
[$not (P and R)$],
|
||||
[$(Q and not P) and not (P and R)$],
|
||||
|
||||
[T], [T], [F], [F], [F],
|
||||
[F], [T], [F], [T], [F],
|
||||
[T], [F], [T], [T], [T],
|
||||
[F], [F], [F], [T], [F],
|
||||
)
|
||||
]
|
||||
|
||||
11. \
|
||||
|
||||
b. Cleveland will win the first game or the second game.
|
||||
|
||||
Cleveland loses both the first and second games.
|
||||
|
||||
e. Roses are red and violets are blue.
|
||||
|
||||
Roses are green.
|
||||
|
||||
i. The function $g$ has a relative maximum at $x = 2$ or $x = 4$ and a relative minimum at $x = 3$.
|
||||
|
||||
$ g(x) "is given by" integral^x_0 (t - 5)(t-6) dif t $
|
||||
|
||||
12a.
|
||||
|
||||
Restore parentheses to $not not P or not Q and not S$.
|
||||
|
||||
$ not (not P) or (not Q and not S) $
|
||||
|
||||
13. \
|
||||
|
||||
a. Make a truth table for the exclusive or ($xor$)
|
||||
|
||||
#table(
|
||||
align: center,
|
||||
columns: 3,
|
||||
[$P$], [$Q$], [$P xor Q$],
|
||||
[T], [T], [F],
|
||||
[F], [T], [T],
|
||||
[T], [F], [T],
|
||||
[F], [F], [F],
|
||||
)
|
||||
|
||||
b. Show that $A xor B = (A or B) and not (A and B)$.
|
||||
|
||||
Intuitively this fact makes sense. Either $A$ or $B$ are true, but $A$ and $B$ can't _both_ be true.
|
||||
|
||||
#proof[
|
||||
By direct computation,
|
||||
|
||||
#table(
|
||||
align: center,
|
||||
columns: 6,
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$P xor Q$],
|
||||
[$A or B$],
|
||||
[$not (A and B)$],
|
||||
[$(A or B) and not (A and B)$],
|
||||
|
||||
[T], [T], [F], [T], [F], [F],
|
||||
[F], [T], [T], [T], [T], [T],
|
||||
[T], [F], [T], [T], [T], [T],
|
||||
[F], [F], [F], [F], [T], [F],
|
||||
)
|
||||
]
|
||||
|
||||
= Exercises
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
#show: dvdtyp.with(
|
||||
title: "PSTAT120A Course Notes",
|
||||
author: "Youwen Wu",
|
||||
date: "Winter 2024",
|
||||
date: "Winter 2025",
|
||||
subtitle: "Taught by Brian Wainwright",
|
||||
)
|
||||
|
||||
|
@ -27,11 +27,11 @@ upon them.
|
|||
#remark[
|
||||
Keep in mind that without $cal(Z F C)$ or another model of set theory that
|
||||
resolves fundamental issues, our set theory is subject to paradoxes like
|
||||
Russell's.
|
||||
Russell's. Whoops, the universe doesn't exist.
|
||||
]
|
||||
|
||||
#definition[
|
||||
A Set is a collection of elements.
|
||||
A *Set* is a collection of elements.
|
||||
]
|
||||
|
||||
#example[Examples of sets][
|
||||
|
@ -101,9 +101,9 @@ as the notation for $n$ dimensional spaces in $RR$?
|
|||
+ $(A sect B)' = A' union B'$
|
||||
]
|
||||
|
||||
#remark[Generalized DeMorgan's][
|
||||
+ $(union_i A_i)' = sect_i A_i'$
|
||||
+ $(sect_i A_i)' = union_i A_i'$
|
||||
#fact[Generalized DeMorgan's][
|
||||
+ $(union_i A_i)' = sect_i A_i '$
|
||||
+ $(sect_i A_i)' = union_i A_i '$
|
||||
]
|
||||
|
||||
== Sizes of infinity
|
||||
|
@ -125,14 +125,26 @@ When a set is uncountably infinite, its cardinality is greater than $aleph_0$.
|
|||
+ The natural numbers $NN$.
|
||||
+ The rationals $QQ$.
|
||||
+ The natural numbers $ZZ$.
|
||||
+ The set of all logical tautologies.
|
||||
]
|
||||
|
||||
#example("Uncountable sets")[
|
||||
+ The real numbers $RR$.
|
||||
+ The real numbers in the interval $[0,1]$.
|
||||
+ The _power set_ of $ZZ$, which is the set of all subsets of $ZZ$.
|
||||
]
|
||||
|
||||
#remark[
|
||||
All the uncountable sets above have cardinality $2^(aleph_0)$ or $aleph_1$ or
|
||||
$frak(c)$ or $beth_1$. This is the _cardinality of the continuum_, also
|
||||
called "aleph 1" or "beth 1".
|
||||
|
||||
However, in general uncountably infinite sets do not have the same
|
||||
cardinality.
|
||||
]
|
||||
|
||||
#fact[
|
||||
If a set is countably infinite, then it has a bijection with $ZZ$. This means
|
||||
every set with cardinality $aleph_0$ has a bijection to $ZZ$.
|
||||
every set with cardinality $aleph_0$ has a bijection to $ZZ$. More generally,
|
||||
any sets with the same cardinality have a bijection between them.
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue