Q6.

The general clockwise rotation matrix in \mathbb{R}^2 is

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

We have $\theta = \frac{3\pi}{2}$, and

$$\cos\left(\frac{3\pi}{2}\right) = 0, \sin\left(\frac{3\pi}{2}\right) = -1$$

So our particular rotation matrix is

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Clearly, the linear transformation that reflects a vector across the vertical axis changes the first standard basis vector, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, to $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

This corresponds to the linear transformation (matrix)

$$S = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Matrix composition, \circ , is an equivalent notion to matrix multiplication. Therefore, we have the two compositions.

1. $T\circ S,$ the linear transformation corresponding to a reflection followed by rotation:

$$T \circ S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

using column by coordinate rule

$$= \left(\left(-1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right) \left(0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right) \right)$$
$$= \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

2. $S \circ T$, the linear transformation corresponding to rotation, followed by reflection. Since matrix composition is generally not commutative, we obtain a different matrix.

$$S \circ T = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

using column by coordinate rule

$$= \left(\left(0 \begin{pmatrix} -1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \left(-1 \begin{pmatrix} -1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right) \right)$$
$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- 7.1 The matrix A corresponds to a linear transformation $T : \mathbb{R}^4 \mapsto \mathbb{R}^3$. A has 3 rows and 4 columns, so its matrix-vector multiplication is only defined when with vectors in \mathbb{R}^4 . Accordingly, it will output a vector in \mathbb{R}^3 . So, p = 4.
- 7.2 See above explanation. q = 3.
- 7.3 To find all vectors $\vec{x} \in \mathbb{R}^4$ whose image under T is \vec{b} , we seek all solutions $\vec{x} = (x_1, x_2, x_3, x_4, x_5)^T$ to the equation

$$T\vec{x} = \vec{b}$$

We can do this using our usual row reduction methods.

$$\begin{pmatrix} -2 & 3 & 7 & -11 & | & -3 \\ 1 & 0 & -2 & 1 & | & 3 \\ 1 & -1 & -3 & 4 & | & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & -1 & -3 & 4 & | & 2 \\ 0 & 1 & 1 & -3 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

We now have the augmented matrix in echelon form. So, x_4 and x_3 are free. Then, let $s,t\in\mathbb{R}$ be free variables

$$\begin{aligned} x_1 &= 3-t+2s\\ x_2 &= 1+3t-s\\ x_3 &= s\\ x_4 &= t \end{aligned}$$

So, all vectors \vec{x} are of the form

$$\vec{x} = \begin{pmatrix} 3+2s-t\\ 1-s+3t\\ s\\ t \end{pmatrix}$$

2

Q7.