alexandria/documents/by-course/math-8/course-notes/main.typ
Youwen Wu 18cb39de9b
Some checks are pending
Deploy Quartz site to GitHub Pages using Nix / build (push) Waiting to run
Deploy Quartz site to GitHub Pages using Nix / deploy (push) Blocked by required conditions
auto-update(nvim): 2025-01-06 12:48:48
2025-01-06 12:48:48 -08:00

69 lines
1.7 KiB
Text

#import "./dvd.typ": *
#show: dvdtyp.with(
title: "Math 8",
subtitle: [UC Santa Barbara],
author: "Youwen Wu",
)
#outline()
= Chapter 1: Logic and Proofs
== Trivial Preliminaries
Definitions barely worth considering. Included purely for posterity.
#definition("Proposition")[
A proposition is a sentence which is either true or false.
]
#example("Primes")[
The numbers 5 and 7 are prime.
]
#example("Not a proposition")[
$x^2 + 6x + 8 = 0$
]
Propositions may be stated in the formalism of mathematics using connectives, as *propositional forms*.
#definition("Propositional forms")[
Let $P$ and $Q$ be propositions. Then:
+ The conjunction of $P$ and $Q$ is written $P and Q$ ($P$ and $Q$).
+ The disjunction of $P$ and $Q$ is written $P or Q$ ($P$ or $Q$) (here "or" is the inclusive or).
+ The negation of $P$ is written $not P$.
]
#definition("Tautology")[
A propositional form for which all of its values are true. In other words, a statement which is always true.
]
#definition("Contradiction")[
A propositional form for which all of its values are false. In other words, a statement which is always false.
]
#problem[Prove that $(P or Q) or (not P and not Q)$ is a tautology][
Trivial, omitted.
]
#example[Several denials of the statement "integer $n$ is even"][
- It is not the case that integer $n$ is even.
- Integer $n$ is not even.
- $n != 2m, forall m in ZZ$
- $n = 2m + 1, exists m in ZZ$
]
DeMorgan's Laws tell us how to distribute logical connectives across parentheses.
#theorem[DeMorgan's Laws][
+ $not (P or Q) = not P and not Q$
+ $not (P and Q) = not P or not Q$
]
#proof[
Trivially, by completing a truth table.
]