37 lines
777 B
Text
37 lines
777 B
Text
#import "@youwen/zen:0.1.0": *
|
|
#import "@preview/ctheorems:1.1.3": *
|
|
|
|
#show: zen.with(
|
|
title: "Homework 1",
|
|
author: "Youwen Wu",
|
|
date: "Winter 2025",
|
|
)
|
|
|
|
1. #[
|
|
#set enum(numbering: "a)", spacing: 2em)
|
|
|
|
+ #[
|
|
We know that $B$ and $B'$ are disjoint. That is, $B sect B' =
|
|
emptyset$. Additionally,
|
|
$
|
|
E = (A sect B) subset B \
|
|
F = (A sect B') subset B' \
|
|
$
|
|
Then we note
|
|
$
|
|
forall x in E, x in B, x in.not B' \
|
|
forall y in F, y in B, y in.not B'
|
|
$
|
|
So clearly $E$ and $F$ have no common elements, and
|
|
$
|
|
E sect F = emptyset
|
|
$
|
|
]
|
|
|
|
+ #[
|
|
$
|
|
E union F &= (A sect B) union (A sect B') \
|
|
&=
|
|
$
|
|
]
|
|
]
|