blog/random-variables-distributions-and-probability-theory.html
2025-02-16 22:01:59 +00:00

1101 lines
228 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<head>
<title>Random variables, distributions, and probability theory | The Involution</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta name="description" content="An overview of discrete and continuous random variables and their distributions and moment generating functions" />
<meta name="author" content="Youwen Wu" />
<meta name="keywords" content="probability, counting, math, expected value, distributions" />
<meta property="og:site_name" content="The Involution" />
<meta property="og:title" content="Random variables, distributions, and probability theory" />
<meta property="og:url" content="https://blog.youwen.dev/random-variables-distributions-and-probability-theory.html" />
<meta property="og:description" content="An overview of discrete and continuous random variables and their distributions and moment generating functions" />
<meta property="og:type" content="article" />
<meta property="twitter:site" content="The Involution" />
<meta property="twitter:title" content="Random variables, distributions, and probability theory" />
<meta property="twitter:description" content="An overview of discrete and continuous random variables and their distributions and moment generating functions" />
<meta property="twitter:creator" content="@youwen" />
<link rel="shortcut icon" href="/favicon.ico" />
<link rel="canonical" href="https://blog.youwen.dev/random-variables-distributions-and-probability-theory.html" />
<link
rel="alternate"
href="./atom.xml"
title="The Involution"
type="application/atom+xml"
/>
<link
rel="alternate"
href="./rss.xml"
title="The Involution"
type="application/rss+xml"
/>
<link rel="stylesheet" href="./out/bundle.css" />
<link rel="stylesheet" href="./css/code.css" />
<script
defer
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/mml-chtml.js"
></script>
<script>
if (
localStorage.theme === "dark" ||
(!("theme" in localStorage) &&
window.matchMedia("(prefers-color-scheme: dark)").matches)
) {
document.documentElement.classList.add("dark")
} else {
document.documentElement.classList.remove("dark")
}
window.onload = () => {
var themeButton = document.getElementById("theme-toggle")
const theme = localStorage.getItem("theme")
if (theme === "light") {
themeButton.innerText = "theme: light"
} else if (theme === "dark") {
themeButton.innerText = "theme: dark"
} else {
themeButton.innerText = "theme: system"
}
var fontButton = document.getElementById("font-toggle")
const font = localStorage.getItem("font")
if (font && font === "serif") {
document.body.classList.remove("font-sans")
document.body.classList.remove("font-serif")
document.body.classList.add("font-serif")
fontButton.innerText = "serif"
}
if (font && font === "sans") {
document.body.classList.remove("font-sans")
document.body.classList.remove("font-serif")
document.body.classList.add("font-sans")
fontButton.innerText = "sans"
}
if (!font) {
document.body.classList.remove("font-sans")
document.body.classList.remove("font-serif")
fontButton.innerText = "serif"
}
}
MathJax = {
startup: {
ready: function () {
MathJax.startup.defaultReady()
MathJax.startup.promise.then(function () {
MathJax.mathml2svgPromise(document.body)
})
},
},
}
</script>
</head>
<body
class="container max-w-3xl mx-auto px-4 transition-colors duration-[2s]"
>
<header class="mt-14 md:mt-24 mb-14">
<div class="inline-flex items-center w-full">
<h1 class="text-4xl md:text-5xl font-serif font-medium">
<a
href="/"
class="dark:hover:text-muted-dark hover:text-muted-light transition-all duration-500 text-nowrap tracking-wide"
><em>The Involution.</em></a
>
</h1>
<div
class="w-full flex-grow flex-shrink rounded-lg h-1 bg-muted-light dark:bg-muted-dark mx-4"
></div>
</div>
<p class="mt-8 mb-3 px-1 italic font-light">
a web-log about computers and math and hacking.
</p>
<a class="text-sm text-iris-light dark:text-iris-dark hover:text-love-light dark:hover:text-love-dark" href="https://youwen.dev"
><em>by </em>Youwen Wu</a
>
<span class="ml-2 font-serif">|</span>
<button
id="theme-toggle"
class="ml-2 text-sm hover:text-accent-light dark:hover:text-muted-dark"
></button>
<span class="ml-2 font-serif">|</span>
<button
id="font-toggle"
class="ml-2 text-sm hover:text-accent-light dark:hover:text-muted-dark"
></button>
</header>
<article>
<header>
<h1 class="text-4xl">
<a href="./random-variables-distributions-and-probability-theory.html">Random variables, distributions, and probability theory</a>
</h1>
<p
class="mb-1 mt-2 italic font-light text-lg text-accent-light dark:text-accent-dark"
>
An overview of discrete and continuous random variables and their distributions and moment generating functions
</p>
<div class="mt-2">2025-02-16</div>
<div class="mt-1 text-sm">
</div>
</header>
<main class="post mt-4"><p>These are some notes Ive been collecting on random variables, their
distributions, expected values, and moment generating functions. I
thought Id write them down somewhere useful.</p>
<p>These are almost extracted verbatim from my in-class notes, which I take
in real time using Typst. I simply wrote a tiny compatibility shim to
allow Pandoc to render them to the web.</p>
<hr />
<h2 id="random-variables">Random variables</h2>
<p>First, some brief exposition on random variables. Quixotically, a random
variable is actually a function.</p>
<p>Standard notation: <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Ω</mi><annotation encoding="application/x-tex">\Omega</annotation></semantics></math> is a sample space, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi><mo></mo><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\omega \in \Omega</annotation></semantics></math> is an
event.</p>
<p><em>Definition. </em></p>
<p>A <strong>random variable</strong> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is a function
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>:</mo><mi>Ω</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">X:\Omega \rightarrow {\mathbb{R}}</annotation></semantics></math> that takes the set of possible
outcomes in a sample space, and maps it to a <a href="https://en.wikipedia.org/wiki/Measurable_space">measurable
space</a>, typically (as in
our case) a subset of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math>.</p>
<p><em>Definition. </em></p>
<p>The <strong>state space</strong> of a random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is all of the values <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>
can take.</p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be a random variable that takes on the values
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ 0,1,2,3 \right\}</annotation></semantics></math>. Then the state space of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is the set
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ 0,1,2,3 \right\}</annotation></semantics></math>.</p>
<h3 id="discrete-random-variables">Discrete random variables</h3>
<p>A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is discrete if there is countable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>A</mi><annotation encoding="application/x-tex">A</annotation></semantics></math> such that
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>A</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">P(X \in A) = 1</annotation></semantics></math>. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi><annotation encoding="application/x-tex">k</annotation></semantics></math> is a possible value if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">P(X = k) &gt; 0</annotation></semantics></math>. We discuss
continuous random variables later.</p>
<p>The <em>probability distribution</em> of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> gives its important probabilistic
information. The probability distribution is a description of the
probabilities <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>B</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X \in B)</annotation></semantics></math> for subsets <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">B \in {\mathbb{R}}</annotation></semantics></math>. We describe
the probability density function and the cumulative distribution
function.</p>
<p>A discrete random variable has probability distribution entirely
determined by its probability mass function (hereafter abbreviated p.m.f
or PMF) <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">p(k) = P(X = k)</annotation></semantics></math>. The p.m.f. is a function from the set of
possible values of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> into <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,1\rbrack</annotation></semantics></math>. Labeling the p.m.f.
with the random variable is done by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">p_{X}(k)</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>X</mi></msub><mo>:</mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> State space of </mtext><mspace width="0.333em"></mspace></mrow><mi>X</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">p_{X}:\text{ State space of }X \rightarrow \lbrack 0,1\rbrack</annotation></semantics></math></p>
<p>By the axioms of probability,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mo></mo><mi>k</mi></munder><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><munder><mo></mo><mi>k</mi></munder><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sum_{k}p_{X}(k) = \sum_{k}P(X = k) = 1</annotation></semantics></math></p>
<p>For a subset <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">B \subset {\mathbb{R}}</annotation></semantics></math>,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>B</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><munder><mo></mo><mrow><mi>k</mi><mo></mo><mi>B</mi></mrow></munder><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X \in B) = \sum_{k \in B}p_{X}(k)</annotation></semantics></math></p>
<h3 id="continuous-random-variables">Continuous random variables</h3>
<p>Now as promised we introduce another major class of random variables.</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be a random variable. If <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> satisfies</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>b</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi>b</mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">P(X \leq b) = \int_{- \infty}^{b}f(x)dx</annotation></semantics></math></p>
<p>for all <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">b \in {\mathbb{R}}</annotation></semantics></math>, then <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> is the <strong>probability density
function</strong> (hereafter abbreviated p.d.f. or PDF) of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p>
<p>We immediately see that the p.d.f. is analogous to the p.m.f. of the
discrete case.</p>
<p>The probability that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mo stretchy="false" form="prefix">(</mo><mi></mi><mi></mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X \in ( - \infty,b\rbrack</annotation></semantics></math> is equal to the area
under the graph of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> from <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi></mi><mi></mi></mrow><annotation encoding="application/x-tex">- \infty</annotation></semantics></math> to <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>b</mi><annotation encoding="application/x-tex">b</annotation></semantics></math>.</p>
<p>A corollary is the following.</p>
<p><em>Fact. </em></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>B</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mo></mo><mi>B</mi></msub><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">P(X \in B) = \int_{B}f(x)dx</annotation></semantics></math></p>
<p>for any <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">B \subset {\mathbb{R}}</annotation></semantics></math> where integration makes sense.</p>
<p>The set can be bounded or unbounded, or any collection of intervals.</p>
<p><em>Fact. </em></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>a</mi><mo></mo><mi>X</mi><mo></mo><mi>b</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mi>a</mi><mi>b</mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">P(a \leq X \leq b) = \int_{a}^{b}f(x)dx</annotation></semantics></math>
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>a</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mi>a</mi><mi></mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">P(X &gt; a) = \int_{a}^{\infty}f(x)dx</annotation></semantics></math></p>
<p><em>Fact. </em></p>
<p>If a random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has density function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> then individual point
values have probability zero:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>c</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mi>c</mi><mi>c</mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo></mo><mi>c</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">P(X = c) = \int_{c}^{c}f(x)dx = 0,\forall c \in {\mathbb{R}}</annotation></semantics></math></p>
<p><em>Remark. </em></p>
<p>It follows a random variable with a density function is not discrete. An
immediate corollary of this is that the probabilities of intervals are
not changed by including or excluding endpoints. So <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X \leq k)</annotation></semantics></math> and
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&lt;</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X &lt; k)</annotation></semantics></math> are equivalent.</p>
<p>How to determine which functions are p.d.f.s? Since
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mi></mi><mo>&lt;</mo><mi>X</mi><mo>&lt;</mo><mi></mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">P( - \infty &lt; X &lt; \infty) = 1</annotation></semantics></math>, a p.d.f. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> must satisfy</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mn>0</mn><mo></mo><mi>x</mi><mo></mo><mi></mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><mn>1</mn></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
f(x) \geq 0\forall x \in {\mathbb{R}} \\
\int_{- \infty}^{\infty}f(x)dx = 1
\end{array}</annotation></semantics></math></p>
<p><em>Fact. </em></p>
<p>Random variables with density functions are called <em>continuous</em> random
variables. This does not imply that the random variable is a continuous
function on <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Ω</mi><annotation encoding="application/x-tex">\Omega</annotation></semantics></math> but it is standard terminology.</p>
<h2 id="discrete-distributions">Discrete distributions</h2>
<p>Recall that the <em>probability distribution</em> of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> gives its important
probabilistic information. Let us discuss some of these distributions.</p>
<p>In general we first consider the experiments properties and theorize
about the distribution that its random variable takes. We can then apply
the distribution to find out various pieces of probabilistic
information.</p>
<h3 id="bernoulli-trials">Bernoulli trials</h3>
<p>A Bernoulli trial is the original “experiment.” Its simply a single
trial with a binary “success” or “failure” outcome. Encode this T/F, 0
or 1, or however youd like. It becomes immediately useful in defining
more complex distributions, so lets analyze its properties.</p>
<p>The setup: the experiment has exactly two outcomes:</p>
<ul>
<li><p>Success <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>S</mi><annotation encoding="application/x-tex">S</annotation></semantics></math> or 1</p></li>
<li><p>Failure <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>F</mi><annotation encoding="application/x-tex">F</annotation></semantics></math> or 0</p></li>
</ul>
<p>Additionally: <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>S</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>p</mi><mo>,</mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>F</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn><mo></mo><mi>p</mi><mo>=</mo><mi>q</mi></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
P(S) = p,(0 &lt; p &lt; 1) \\
P(F) = 1 - p = q
\end{array}</annotation></semantics></math></p>
<p>Construct the probability mass function:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>p</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>0</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn><mo></mo><mi>p</mi></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
P(X = 1) = p \\
P(X = 0) = 1 - p
\end{array}</annotation></semantics></math></p>
<p>Write it as:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mrow><mi>x</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msub><mo>=</mo><msup><mi>p</mi><mi>k</mi></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mn>1</mn><mo></mo><mi>k</mi></mrow></msup></mrow><annotation encoding="application/x-tex">p_{x(k)} = p^{k}(1 - p)^{1 - k}</annotation></semantics></math></p>
<p>for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">k = 1</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">k = 0</annotation></semantics></math>.</p>
<h3 id="binomial-distribution">Binomial distribution</h3>
<p>The setup: very similar to Bernoulli, trials have exactly 2 outcomes. A
bunch of Bernoulli trials in a row.</p>
<p>Importantly: <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>q</mi><annotation encoding="application/x-tex">q</annotation></semantics></math> are defined exactly the same in all trials.</p>
<p>This ties the binomial distribution to the sampling with replacement
model, since each trial does not affect the next.</p>
<p>We conduct <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> <strong>independent</strong> trials of this experiment. Example with
coins: each flip independently has a <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfrac><mn>1</mn><mn>2</mn></mfrac><annotation encoding="application/x-tex">\frac{1}{2}</annotation></semantics></math> chance of heads or
tails (holds same for die, rigged coin, etc).</p>
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> is fixed, i.e. known ahead of time.</p>
<h4 id="binomial-random-variable">Binomial random variable</h4>
<p>Lets consider the random variable characterized by the binomial
distribution now.</p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>=</mo><mi>#</mi></mrow><annotation encoding="application/x-tex">X = \#</annotation></semantics></math> of successes in <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> independent trials. For any particular
sequence of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> trials, it takes the form
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Ω</mi><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mi>ω</mi><mo stretchy="true" form="postfix">}</mo></mrow><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> where </mtext><mspace width="0.333em"></mspace></mrow><mi>ω</mi><mo>=</mo><mi>S</mi><mi>F</mi><mi>F</mi><mi></mi><mi>F</mi></mrow><annotation encoding="application/x-tex">\Omega = \left\{ \omega \right\}\text{ where }\omega = SFF\cdots F</annotation></semantics></math> and
is of length <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math>.</p>
<p>Then <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>ω</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi></mi><mo>,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">X(\omega) = 0,1,2,\ldots,n</annotation></semantics></math> can take <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n + 1</annotation></semantics></math> possible values. The
probability of any particular sequence is given by the product of the
individual trial probabilities.</p>
<p><em>Example. </em></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi><mo>=</mo><mi>S</mi><mi>F</mi><mi>F</mi><mi>S</mi><mi>F</mi><mi></mi><mi>S</mi><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mi>p</mi><mi>q</mi><mi>q</mi><mi>p</mi><mi>q</mi><mi></mi><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\omega = SFFSF\cdots S = (pqqpq\cdots p)</annotation></semantics></math></p>
<p>So <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo>=</mo><mn>0</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>F</mi><mi>F</mi><mi>F</mi><mi></mi><mi>F</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>q</mi><mo></mo><mi>q</mi><mo></mo><mi></mi><mo></mo><mi>q</mi><mo>=</mo><msup><mi>q</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">P(x = 0) = P(FFF\cdots F) = q \cdot q \cdot \cdots \cdot q = q^{n}</annotation></semantics></math>.</p>
<p>And <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>S</mi><mi>F</mi><mi>F</mi><mi></mi><mi>F</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>F</mi><mi>S</mi><mi>F</mi><mi>F</mi><mi></mi><mi>F</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mi></mi><mo>+</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>F</mi><mi>F</mi><mi>F</mi><mi></mi><mi>F</mi><mi>S</mi><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><munder><munder><mi>n</mi><mo accent="true"></mo></munder><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> possible outcomes</mtext></mrow></munder><mo></mo><msup><mi>p</mi><mn>1</mn></msup><mo></mo><msup><mi>p</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>1</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><msup><mi>p</mi><mn>1</mn></msup><mo></mo><msup><mi>p</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mi>n</mi><mo></mo><msup><mi>p</mi><mn>1</mn></msup><mo></mo><msup><mi>p</mi><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow></msup></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
P(X = 1) = P(SFF\cdots F) + P(FSFF\cdots F) + \cdots + P(FFF\cdots FS) \\
= \underset{\text{ possible outcomes}}{\underbrace{n}} \cdot p^{1} \cdot p^{n - 1} \\
= \begin{pmatrix}
n \\
1
\end{pmatrix} \cdot p^{1} \cdot p^{n - 1} \\
= n \cdot p^{1} \cdot p^{n - 1}
\end{array}</annotation></semantics></math></p>
<p>Now we can generalize</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>2</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>2</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mi>p</mi><mn>2</mn></msup><msup><mi>q</mi><mrow><mi>n</mi><mo></mo><mn>2</mn></mrow></msup></mrow><annotation encoding="application/x-tex">P(X = 2) = \begin{pmatrix}
n \\
2
\end{pmatrix}p^{2}q^{n - 2}</annotation></semantics></math></p>
<p>How about all successes?</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>n</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>S</mi><mi>S</mi><mi></mi><mi>S</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msup><mi>p</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">P(X = n) = P(SS\cdots S) = p^{n}</annotation></semantics></math></p>
<p>We see that for all failures we have <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>q</mi><mi>n</mi></msup><annotation encoding="application/x-tex">q^{n}</annotation></semantics></math> and all successes we have
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>p</mi><mi>n</mi></msup><annotation encoding="application/x-tex">p^{n}</annotation></semantics></math>. Otherwise we use our method above.</p>
<p>In general, here is the probability mass function for the binomial
random variable</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>k</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mi>p</mi><mi>k</mi></msup><msup><mi>q</mi><mrow><mi>n</mi><mo></mo><mi>k</mi></mrow></msup><mo>,</mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> for </mtext><mspace width="0.333em"></mspace></mrow><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi></mi><mo>,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">P(X = k) = \begin{pmatrix}
n \\
k
\end{pmatrix}p^{k}q^{n - k},\text{ for }k = 0,1,2,\ldots,n</annotation></semantics></math></p>
<p>Binomial distribution is very powerful. Choosing between two things,
what are the probabilities?</p>
<p>To summarize the characterization of the binomial random variable:</p>
<ul>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> independent trials</p></li>
<li><p>each trial results in binary success or failure</p></li>
<li><p>with probability of success <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math>, identically across trials</p></li>
</ul>
<p>with <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>=</mo><mi>#</mi></mrow><annotation encoding="application/x-tex">X = \#</annotation></semantics></math> successes in <strong>fixed</strong> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> trials.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Bin</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Bin}(n,p)</annotation></semantics></math></p>
<p>with probability mass function</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>x</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mi>p</mi><mi>x</mi></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>n</mi><mo></mo><mi>x</mi></mrow></msup><mo>=</mo><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi></mi><mo>,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">P(X = x) = \begin{pmatrix}
n \\
x
\end{pmatrix}p^{x}(1 - p)^{n - x} = p(x)\text{ for }x = 0,1,2,\ldots,n</annotation></semantics></math></p>
<p>We see this is in fact the binomial theorem!</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mn>0</mn><mo>,</mo><munderover><mo></mo><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><munderover><mo></mo><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><mi>n</mi></munderover><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>x</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mi>p</mi><mi>x</mi></msup><msup><mi>q</mi><mrow><mi>n</mi><mo></mo><mi>x</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">p(x) \geq 0,\sum_{x = 0}^{n}p(x) = \sum_{x = 0}^{n}\begin{pmatrix}
n \\
x
\end{pmatrix}p^{x}q^{n - x} = (p + q)^{n}</annotation></semantics></math></p>
<p>In fact, <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup><mo>=</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>p</mi><mo>+</mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">(p + q)^{n} = \left( p + (1 - p) \right)^{n} = 1</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>What is the probability of getting exactly three aces (1s) out of 10
throws of a fair die?</p>
<p>Seems a little trickier but we can still write this as well defined
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>S</mi><annotation encoding="application/x-tex">S</annotation></semantics></math>/<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>F</mi><annotation encoding="application/x-tex">F</annotation></semantics></math>. Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>S</mi><annotation encoding="application/x-tex">S</annotation></semantics></math> be getting an ace and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>F</mi><annotation encoding="application/x-tex">F</annotation></semantics></math> being anything else.</p>
<p>Then <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow><annotation encoding="application/x-tex">p = \frac{1}{6}</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">n = 10</annotation></semantics></math>. We want <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X = 3)</annotation></semantics></math>. So</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>10</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>3</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mi>p</mi><mn>3</mn></msup><msup><mi>q</mi><mn>7</mn></msup><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>10</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>3</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>3</mn></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>7</mn></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo></mo><mn>0.15505</mn></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
P(X = 3) = \begin{pmatrix}
10 \\
3
\end{pmatrix}p^{3}q^{7} = \begin{pmatrix}
10 \\
3
\end{pmatrix}\left( \frac{1}{6} \right)^{3}\left( \frac{5}{6} \right)^{7} \\
\approx 0.15505
\end{array}</annotation></semantics></math></p>
<h4 id="with-or-without-replacement">With or without replacement?</h4>
<p>I place particular emphasis on the fact that the binomial distribution
generally applies to cases where youre sampling with <em>replacement</em>.
Consider the following: <em>Example. </em></p>
<p>Suppose we have two types of candy, red and black. Select <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> candies.
Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be the number of red candies among <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> selected.</p>
<p>2 cases.</p>
<ul>
<li>case 1: with replacement: Binomial Distribution, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math>,
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>=</mo><mfrac><mi>a</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">p = \frac{a}{a + b}</annotation></semantics></math>.</li>
</ul>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>2</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>2</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mi>a</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mi>b</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>n</mi><mo></mo><mn>2</mn></mrow></msup></mrow><annotation encoding="application/x-tex">P(X = 2) = \begin{pmatrix}
n \\
2
\end{pmatrix}\left( \frac{a}{a + b} \right)^{2}\left( \frac{b}{a + b} \right)^{n - 2}</annotation></semantics></math></p>
<ul>
<li>case 2: without replacement: then use counting</li>
</ul>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>a</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>x</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>b</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi><mo></mo><mi>x</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>a</mi><mo>+</mo><mi>b</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mfrac><mo>=</mo><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X = x) = \frac{\begin{pmatrix}
a \\
x
\end{pmatrix}\begin{pmatrix}
b \\
n - x
\end{pmatrix}}{\begin{pmatrix}
a + b \\
n
\end{pmatrix}} = p(x)</annotation></semantics></math></p>
<p>In case 2, we used the elementary counting techniques we are already
familiar with. Immediately we see a distinct case similar to the
binomial but when sampling without replacement. Lets formalize this as
a random variable!</p>
<h3 id="hypergeometric-distribution">Hypergeometric distribution</h3>
<p>Lets introduce a random variable to represent a situation like case 2
above.</p>
<p><em>Definition. </em></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>a</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>x</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>b</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi><mo></mo><mi>x</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>a</mi><mo>+</mo><mi>b</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mfrac><mo>=</mo><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X = x) = \frac{\begin{pmatrix}
a \\
x
\end{pmatrix}\begin{pmatrix}
b \\
n - x
\end{pmatrix}}{\begin{pmatrix}
a + b \\
n
\end{pmatrix}} = p(x)</annotation></semantics></math></p>
<p>is known as a <strong>Hypergeometric distribution</strong>.</p>
<p>Abbreviate this by:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Hypergeom</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>#</mi><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> total</mtext></mrow><mo>,</mo><mi>#</mi><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> successes</mtext></mrow><mo>,</mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> sample size</mtext></mrow><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Hypergeom}\left( \#\text{ total},\#\text{ successes},\text{ sample size} \right)</annotation></semantics></math></p>
<p>For example,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Hypergeom</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>N</mi><mo>,</mo><msub><mi>N</mi><mi>a</mi></msub><mo>,</mo><mi>n</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Hypergeom}\left( N,N_{a},n \right)</annotation></semantics></math></p>
<p><em>Remark. </em></p>
<p>If <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>x</mi><annotation encoding="application/x-tex">x</annotation></semantics></math> is very small relative to <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a + b</annotation></semantics></math>, then both cases give similar
(approx. the same) answers.</p>
<p>For instance, if were sampling for blood types from UCSB, and we take a
student out without replacement, we dont really change the sample size
substantially. So both answers give a similar result.</p>
<p>Suppose we have two types of items, type <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>A</mi><annotation encoding="application/x-tex">A</annotation></semantics></math> and type <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>B</mi><annotation encoding="application/x-tex">B</annotation></semantics></math>. Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>N</mi><mi>A</mi></msub><annotation encoding="application/x-tex">N_{A}</annotation></semantics></math>
be <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>#</mi><annotation encoding="application/x-tex">\#</annotation></semantics></math> type <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>A</mi><annotation encoding="application/x-tex">A</annotation></semantics></math>, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>N</mi><mi>B</mi></msub><annotation encoding="application/x-tex">N_{B}</annotation></semantics></math> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>#</mi><annotation encoding="application/x-tex">\#</annotation></semantics></math> type <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>B</mi><annotation encoding="application/x-tex">B</annotation></semantics></math>. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mo>=</mo><msub><mi>N</mi><mi>A</mi></msub><mo>+</mo><msub><mi>N</mi><mi>B</mi></msub></mrow><annotation encoding="application/x-tex">N = N_{A} + N_{B}</annotation></semantics></math> is the
total number of objects.</p>
<p>We sample <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> items <strong>without replacement</strong> (<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo></mo><mi>N</mi></mrow><annotation encoding="application/x-tex">n \leq N</annotation></semantics></math>) with order not
mattering. Denote by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> the number of type <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>A</mi><annotation encoding="application/x-tex">A</annotation></semantics></math> objects in our sample.</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo></mo><msub><mi>N</mi><mi>A</mi></msub><mo></mo><mi>N</mi></mrow><annotation encoding="application/x-tex">0 \leq N_{A} \leq N</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo></mo><mi>n</mi><mo></mo><mi>N</mi></mrow><annotation encoding="application/x-tex">1 \leq n \leq N</annotation></semantics></math> be integers. A random
variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the <strong>hypergeometric distribution</strong> with parameters
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">(</mo><mi>N</mi><mo>,</mo><msub><mi>N</mi><mi>A</mi></msub><mo>,</mo><mi>n</mi><mo stretchy="true" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">\left( N,N_{A},n \right)</annotation></semantics></math> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> takes values in the set
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi></mi><mo>,</mo><mi>n</mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ 0,1,\ldots,n \right\}</annotation></semantics></math> and has p.m.f.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><msub><mi>N</mi><mi>A</mi></msub></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>k</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>N</mi><mo></mo><msub><mi>N</mi><mi>A</mi></msub></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi><mo></mo><mi>k</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>N</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mfrac><mo>=</mo><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X = k) = \frac{\begin{pmatrix}
N_{A} \\
k
\end{pmatrix}\begin{pmatrix}
N - N_{A} \\
n - k
\end{pmatrix}}{\begin{pmatrix}
N \\
n
\end{pmatrix}} = p(k)</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>N</mi><mi>A</mi></msub><mo>=</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">N_{A} = 10</annotation></semantics></math> defectives. Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>N</mi><mi>B</mi></msub><mo>=</mo><mn>90</mn></mrow><annotation encoding="application/x-tex">N_{B} = 90</annotation></semantics></math> non-defectives. We select
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">n = 5</annotation></semantics></math> without replacement. What is the probability that 2 of the 5
selected are defective?</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Hypergeom </mtext><mspace width="0.333em"></mspace></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>N</mi><mo>=</mo><mn>100</mn><mo>,</mo><msub><mi>N</mi><mi>A</mi></msub><mo>=</mo><mn>10</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>5</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Hypergeom }\left( N = 100,N_{A} = 10,n = 5 \right)</annotation></semantics></math></p>
<p>We want <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>2</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X = 2)</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>2</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>10</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>2</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>90</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>3</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>100</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>5</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow></mfrac><mo></mo><mn>0.0702</mn></mrow><annotation encoding="application/x-tex">P(X = 2) = \frac{\begin{pmatrix}
10 \\
2
\end{pmatrix}\begin{pmatrix}
90 \\
3
\end{pmatrix}}{\begin{pmatrix}
100 \\
5
\end{pmatrix}} \approx 0.0702</annotation></semantics></math></p>
<p><em>Remark. </em></p>
<p>Make sure you can distinguish when a problem is binomial or when it is
hypergeometric. This is very important on exams.</p>
<p>Recall that both ask about number of successes, in a fixed number of
trials. But binomial is sample with replacement (each trial is
independent) and sampling without replacement is hypergeometric.</p>
<h3 id="geometric-distribution">Geometric distribution</h3>
<p>Consider an infinite sequence of independent trials. e.g. number of
attempts until I make a basket.</p>
<p>In fact we can think of this as a variation on the binomial
distribution. But in this case we dont sample <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> times and ask how
many successes we have, we sample as many times as we need for <em>one</em>
success. Later on well see this is really a specific case of another
distribution, the <em>negative binomial</em>.</p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>X</mi><mi>i</mi></msub><annotation encoding="application/x-tex">X_{i}</annotation></semantics></math> denote the outcome of the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>i</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">i^{\text{th}}</annotation></semantics></math> trial, where
success is 1 and failure is 0. Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>N</mi><annotation encoding="application/x-tex">N</annotation></semantics></math> be the number of trials needed to
observe the first success in a sequence of independent trials with
probability of success <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math>. Then</p>
<p>We fail <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">k - 1</annotation></semantics></math> times and succeed on the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>k</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">k^{\text{th}}</annotation></semantics></math> try. Then:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>N</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>X</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi></mi><mo>,</mo><msub><mi>X</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>X</mi><mi>k</mi></msub><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mi>p</mi></mrow><annotation encoding="application/x-tex">P(N = k) = P\left( X_{1} = 0,X_{2} = 0,\ldots,X_{k - 1} = 0,X_{k} = 1 \right) = (1 - p)^{k - 1}p</annotation></semantics></math></p>
<p>This is the probability of failures raised to the amount of failures,
times probability of success.</p>
<p>The key characteristic in these trials, we keep going until we succeed.
Theres no <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> choose <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi><annotation encoding="application/x-tex">k</annotation></semantics></math> in front like the binomial distribution
because theres exactly one sequence that gives us success.</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">0 &lt; p \leq 1</annotation></semantics></math>. A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the geometric distribution
with success parameter <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math> if the possible values of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> are
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mi></mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ 1,2,3,\ldots \right\}</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> satisfies</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mi>p</mi></mrow><annotation encoding="application/x-tex">P(X = k) = (1 - p)^{k - 1}p</annotation></semantics></math></p>
<p>for positive integers <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi><annotation encoding="application/x-tex">k</annotation></semantics></math>. Abbreviate this by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Geom</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Geom}(p)</annotation></semantics></math>.</p>
<p><em>Example. </em></p>
<p>What is the probability it takes more than seven rolls of a fair die to
roll a six?</p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be the number of rolls of a fair die until the first six. Then
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Geom</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Geom}\left( \frac{1}{6} \right)</annotation></semantics></math>. Now we just want
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mn>7</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X &gt; 7)</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mn>7</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>8</mn></mrow><mo accent="false"></mo></munderover><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>8</mn></mrow><mo accent="false"></mo></munderover><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow><annotation encoding="application/x-tex">P(X &gt; 7) = \sum_{k = 8}^{\infty}P(X = k) = \sum_{k = 8}^{\infty}\left( \frac{5}{6} \right)^{k - 1}\frac{1}{6}</annotation></semantics></math></p>
<p>Re-indexing,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>8</mn></mrow><mo accent="false"></mo></munderover><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>7</mn></msup><munderover><mo></mo><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mo accent="false"></mo></munderover><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mi>j</mi></msup></mrow><annotation encoding="application/x-tex">\sum_{k = 8}^{\infty}\left( \frac{5}{6} \right)^{k - 1}\frac{1}{6} = \frac{1}{6}\left( \frac{5}{6} \right)^{7}\sum_{j = 0}^{\infty}\left( \frac{5}{6} \right)^{j}</annotation></semantics></math></p>
<p>Now we calculate by standard methods:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>7</mn></msup><munderover><mo></mo><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mo accent="false"></mo></munderover><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mi>j</mi></msup><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>7</mn></msup><mo></mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo></mo><mfrac><mn>5</mn><mn>6</mn></mfrac></mrow></mfrac><mo>=</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>5</mn><mn>6</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>7</mn></msup></mrow><annotation encoding="application/x-tex">\frac{1}{6}\left( \frac{5}{6} \right)^{7}\sum_{j = 0}^{\infty}\left( \frac{5}{6} \right)^{j} = \frac{1}{6}\left( \frac{5}{6} \right)^{7} \cdot \frac{1}{1 - \frac{5}{6}} = \left( \frac{5}{6} \right)^{7}</annotation></semantics></math></p>
<h3 id="negative-binomial">Negative binomial</h3>
<p>As promised, heres the negative binomial.</p>
<p>Consider a sequence of Bernoulli trials with the following
characteristics:</p>
<ul>
<li><p>Each trial success or failure</p></li>
<li><p>Prob. of success <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math> is same on each trial</p></li>
<li><p>Trials are independent (notice they are not fixed to specific
number)</p></li>
<li><p>Experiment continues until <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>r</mi><annotation encoding="application/x-tex">r</annotation></semantics></math> successes are observed, where <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>r</mi><annotation encoding="application/x-tex">r</annotation></semantics></math> is
a given parameter</p></li>
</ul>
<p>Then if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is the number of trials necessary until <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>r</mi><annotation encoding="application/x-tex">r</annotation></semantics></math> successes are
observed, we say <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is a <strong>negative binomial</strong> random variable.</p>
<p>Immediately we see that the geometric distribution is just the negative
binomial with <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">r = 1</annotation></semantics></math>.</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo></mo><msup><mi></mi><mo>+</mo></msup></mrow><annotation encoding="application/x-tex">k \in {\mathbb{Z}}^{+}</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">0 &lt; p \leq 1</annotation></semantics></math>. A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>
has the negative binomial distribution with parameters
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mi>k</mi><mo>,</mo><mi>p</mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ k,p \right\}</annotation></semantics></math> if the possible values of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> are the integers
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>,</mo><mi></mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ k,k + 1,k + 2,\ldots \right\}</annotation></semantics></math> and the p.m.f. is</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>n</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>n</mi><mo></mo><mn>1</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>k</mi><mo></mo><mn>1</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mi>p</mi><mi>k</mi></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mi>n</mi><mo></mo><mi>k</mi></mrow></msup><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> for </mtext><mspace width="0.333em"></mspace></mrow><mi>n</mi><mo></mo><mi>k</mi></mrow><annotation encoding="application/x-tex">P(X = n) = \begin{pmatrix}
n - 1 \\
k - 1
\end{pmatrix}p^{k}(1 - p)^{n - k}\text{ for }n \geq k</annotation></semantics></math></p>
<p>Abbreviate this by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Negbin</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo>,</mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Negbin}(k,p)</annotation></semantics></math>.</p>
<p><em>Example. </em></p>
<p>Steph Curry has a three point percentage of approx. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>43</mn><mi>%</mi></mrow><annotation encoding="application/x-tex">43\%</annotation></semantics></math>. What is the
probability that Steph makes his third three-point basket on his
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mn>5</mn><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">5^{\text{th}}</annotation></semantics></math> attempt?</p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be number of attempts required to observe the 3rd success. Then,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Negbin</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo>=</mo><mn>3</mn><mo>,</mo><mi>p</mi><mo>=</mo><mn>0.43</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Negbin}(k = 3,p = 0.43)</annotation></semantics></math></p>
<p>So, <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>5</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><msup><mrow><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>5</mn><mo></mo><mn>1</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>3</mn><mo></mo><mn>1</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mn>0.43</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mn>3</mn></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mn>0.43</mn><mo stretchy="true" form="postfix">)</mo></mrow><mrow><mn>5</mn><mo></mo><mn>3</mn></mrow></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mn>4</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>2</mn></mtd></mtr></mtable><mo stretchy="true" form="postfix">)</mo></mrow><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>0.43</mn><mo stretchy="true" form="postfix">)</mo></mrow><mn>3</mn></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>0.57</mn><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo></mo><mn>0.155</mn></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
P(X = 5) &amp; = {\begin{pmatrix}
5 - 1 \\
3 - 1
\end{pmatrix}(0.43)}^{3}(1 - 0.43)^{5 - 3} \\
&amp; = \begin{pmatrix}
4 \\
2
\end{pmatrix}(0.43)^{3}(0.57)^{2} \\
&amp; \approx 0.155
\end{aligned}</annotation></semantics></math></p>
<h3 id="poisson-distribution">Poisson distribution</h3>
<p>This p.m.f. follows from the Taylor expansion</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>e</mi><mi>λ</mi></msup><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mo accent="false"></mo></munderover><mfrac><msup><mi>λ</mi><mi>k</mi></msup><mrow><mi>k</mi><mi>!</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">e^{\lambda} = \sum_{k = 0}^{\infty}\frac{\lambda^{k}}{k!}</annotation></semantics></math></p>
<p>which implies that</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mo accent="false"></mo></munderover><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi></mrow></msup><mfrac><msup><mi>λ</mi><mi>k</mi></msup><mrow><mi>k</mi><mi>!</mi></mrow></mfrac><mo>=</mo><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi></mrow></msup><msup><mi>e</mi><mi>λ</mi></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sum_{k = 0}^{\infty}e^{- \lambda}\frac{\lambda^{k}}{k!} = e^{- \lambda}e^{\lambda} = 1</annotation></semantics></math></p>
<p><em>Definition. </em></p>
<p>For an integer valued random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>, we say
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Poisson</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Poisson}(\lambda)</annotation></semantics></math> if it has p.m.f.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi></mrow></msup><mfrac><msup><mi>λ</mi><mi>k</mi></msup><mrow><mi>k</mi><mi>!</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">P(X = k) = e^{- \lambda}\frac{\lambda^{k}}{k!}</annotation></semantics></math></p>
<p>for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo></mo><mrow><mo stretchy="true" form="prefix">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi></mi><mo stretchy="true" form="postfix">}</mo></mrow></mrow><annotation encoding="application/x-tex">k \in \left\{ 0,1,2,\ldots \right\}</annotation></semantics></math> for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lambda &gt; 0</annotation></semantics></math> and</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mo accent="false"></mo></munderover><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sum_{k = 0}^{\infty}P(X = k) = 1</annotation></semantics></math></p>
<p>The Poisson arises from the Binomial. It applies in the binomial context
when <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> is very large (<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo></mo><mn>100</mn></mrow><annotation encoding="application/x-tex">n \geq 100</annotation></semantics></math>) and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math> is very small
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo></mo><mn>0.05</mn></mrow><annotation encoding="application/x-tex">p \leq 0.05</annotation></semantics></math>, such that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mi>p</mi></mrow><annotation encoding="application/x-tex">np</annotation></semantics></math> is a moderate number (<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mi>p</mi><mo>&lt;</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">np &lt; 10</annotation></semantics></math>).</p>
<p>Then <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> follows a Poisson distribution with <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>=</mo><mi>n</mi><mi>p</mi></mrow><annotation encoding="application/x-tex">\lambda = np</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mtext mathvariant="normal">Bin</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mtext mathvariant="normal">Poisson</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo>=</mo><mi>n</mi><mi>p</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P\left( \text{Bin}(n,p) = k \right) \approx P\left( \text{Poisson}(\lambda = np) = k \right)</annotation></semantics></math></p>
<p>for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi></mi><mo>,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">k = 0,1,\ldots,n</annotation></semantics></math>.</p>
<p>The Poisson distribution is useful for finding the probabilities of rare
events over a continuous interval of time. By knowing <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>=</mo><mi>n</mi><mi>p</mi></mrow><annotation encoding="application/x-tex">\lambda = np</annotation></semantics></math> for
small <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math>, we can calculate many probabilities.</p>
<p><em>Example. </em></p>
<p>The number of typing errors in the page of a textbook.</p>
<p>Let</p>
<ul>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math> be the number of letters of symbols per page (large)</p></li>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math> be the probability of error, small enough such that</p></li>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munder><mo>lim</mo><mrow><mi>n</mi><mo></mo><mi></mi></mrow></munder><munder><mo>lim</mo><mrow><mi>p</mi><mo></mo><mn>0</mn></mrow></munder><mi>n</mi><mi>p</mi><mo>=</mo><mi>λ</mi><mo>=</mo><mn>0.1</mn></mrow><annotation encoding="application/x-tex">\lim\limits_{n \rightarrow \infty}\lim\limits_{p \rightarrow 0}np = \lambda = 0.1</annotation></semantics></math></p></li>
</ul>
<p>What is the probability of exactly 1 error?</p>
<p>We can approximate the distribution of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> with a
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext mathvariant="normal">Poisson</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo>=</mo><mn>0.1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\text{Poisson}(\lambda = 0.1)</annotation></semantics></math> distribution</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mi>e</mi><mrow><mi></mi><mn>0.1</mn></mrow></msup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>0.1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mn>1</mn></msup></mrow><mrow><mn>1</mn><mi>!</mi></mrow></mfrac><mo>=</mo><mn>0.09048</mn></mrow><annotation encoding="application/x-tex">P(X = 1) = \frac{e^{- 0.1}(0.1)^{1}}{1!} = 0.09048</annotation></semantics></math></p>
<h2 id="continuous-distributions">Continuous distributions</h2>
<p>All of the distributions weve been analyzing have been discrete, that
is, they apply to random variables with a
<a href="https://en.wikipedia.org/wiki/Countable_set">countable</a> state space.
Even when the state space is infinite, as in the negative binomial, it
is countable. We can think of it as indexing each trial with a natural
number <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mi></mi></mrow><annotation encoding="application/x-tex">0,1,2,3,\ldots</annotation></semantics></math>.</p>
<p>Now we turn our attention to continuous random variables that operate on
uncountably infinite state spaces. For example, if we sample uniformly
inside of the interval <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,1\rbrack</annotation></semantics></math>, there are an uncountably
infinite number of possible values we could obtain. We cannot index
these values by the natural numbers, by some theorems of set theory we
in fact know that the interval <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,1\rbrack</annotation></semantics></math> has a bijection to
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi></mi><annotation encoding="application/x-tex">\mathbb{R}</annotation></semantics></math> and has cardinality <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>א</mi><mn>1</mn></msub><annotation encoding="application/x-tex">א_{1}</annotation></semantics></math>.</p>
<p>Additionally we notice that asking for the probability that we pick a
certain point in the interval <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,1\rbrack</annotation></semantics></math> makes no sense, there
are an infinite amount of sample points! Intuitively we should think
that the probability of choosing any particular point is 0. However, we
should be able to make statements about whether we can choose a point
that lies within a subset, like <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>0.5</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,0.5\rbrack</annotation></semantics></math>.</p>
<p>Lets formalize these ideas.</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be a random variable. If we have a function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> such that</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>b</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi>b</mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">P(X \leq b) = \int_{- \infty}^{b}f(x)dx</annotation></semantics></math> for all
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">b \in {\mathbb{R}}</annotation></semantics></math>, then <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> is the <strong>probability density function</strong>
of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p>
<p>The probability that the value of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> lies in <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">(</mo><mi></mi><mi></mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">( - \infty,b\rbrack</annotation></semantics></math>
equals the area under the curve of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> from <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi></mi><mi></mi></mrow><annotation encoding="application/x-tex">- \infty</annotation></semantics></math> to <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>b</mi><annotation encoding="application/x-tex">b</annotation></semantics></math>.</p>
<p>If <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> satisfies this definition, then for any <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo></mo><mi></mi></mrow><annotation encoding="application/x-tex">B \subset {\mathbb{R}}</annotation></semantics></math>
for which integration makes sense,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>B</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mo></mo><mi>B</mi></msub><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">P(X \in B) = \int_{B}f(x)dx</annotation></semantics></math></p>
<p><em>Remark. </em></p>
<p>Recall from our previous discussion of random variables that the PDF is
the analogue of the PMF for discrete random variables.</p>
<p>Properties of a CDF:</p>
<p>Any CDF <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">F(x) = P(X \leq x)</annotation></semantics></math> satisfies</p>
<ol>
<li><p>Integrates to unity: <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mi></mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">F( - \infty) = 0</annotation></semantics></math>, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">F(\infty) = 1</annotation></semantics></math></p></li>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">F(x)</annotation></semantics></math> is non-decreasing in <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>x</mi><annotation encoding="application/x-tex">x</annotation></semantics></math> (monotonically increasing)</p></li>
</ol>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi><mo>&lt;</mo><mi>t</mi><mo></mo><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">s &lt; t \Rightarrow F(s) \leq F(t)</annotation></semantics></math></p>
<ol>
<li><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>a</mi><mo>&lt;</mo><mi>X</mi><mo></mo><mi>b</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>b</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>a</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>b</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>a</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(a &lt; X \leq b) = P(X \leq b) - P(X \leq a) = F(b) - F(a)</annotation></semantics></math></li>
</ol>
<p>Like we mentioned before, we can only ask about things like
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X \leq k)</annotation></semantics></math>, but not <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X = k)</annotation></semantics></math>. In fact <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">P(X = k) = 0</annotation></semantics></math> for all <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi><annotation encoding="application/x-tex">k</annotation></semantics></math>.
An immediate corollary of this is that we can freely interchange <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mo></mo><annotation encoding="application/x-tex">\leq</annotation></semantics></math>
and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mo>&lt;</mo><annotation encoding="application/x-tex">&lt;</annotation></semantics></math> and likewise for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mo></mo><annotation encoding="application/x-tex">\geq</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mo>&gt;</mo><annotation encoding="application/x-tex">&gt;</annotation></semantics></math>, since <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&lt;</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X \leq k) = P(X &lt; k)</annotation></semantics></math>
if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">P(X = k) = 0</annotation></semantics></math>.</p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be a continuous random variable with density (pdf)</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mi>c</mi><msup><mi>x</mi><mn>2</mn></msup></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>2</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">otherwise </mtext><mspace width="0.333em"></mspace></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f(x) = \begin{cases}
cx^{2} &amp; \text{for }0 &lt; x &lt; 2 \\
0 &amp; \text{otherwise }
\end{cases}</annotation></semantics></math></p>
<ol>
<li>What is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>c</mi><annotation encoding="application/x-tex">c</annotation></semantics></math>?</li>
</ol>
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>c</mi><annotation encoding="application/x-tex">c</annotation></semantics></math> is such that
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo></mo><mn>0</mn><mn>2</mn></msubsup><mi>c</mi><msup><mi>x</mi><mn>2</mn></msup><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">1 = \int_{- \infty}^{\infty}f(x)dx = \int_{0}^{2}cx^{2}dx</annotation></semantics></math></p>
<ol>
<li>Find the probability that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is between 1 and 1.4.</li>
</ol>
<p>Integrate the curve between 1 and 1.4.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><msubsup><mo></mo><mn>1</mn><mn>1.4</mn></msubsup><mfrac><mn>3</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mi>d</mi><mi>x</mi><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><msup><mi>x</mi><mn>3</mn></msup><mn>8</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><msubsup><mo stretchy="false" form="prefix">|</mo><mn>1</mn><mn>1.4</mn></msubsup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mn>0.218</mn></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
\int_{1}^{1.4}\frac{3}{8}x^{2}dx = \left( \frac{x^{3}}{8} \right)|_{1}^{1.4} \\
= 0.218
\end{array}</annotation></semantics></math></p>
<p>This is the probability that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> lies between 1 and 1.4.</p>
<ol>
<li>Find the probability that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is between 1 and 3.</li>
</ol>
<p>Idea: integrate between 1 and 3, be careful after 2.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo></mo><mn>1</mn><mn>2</mn></msubsup><mfrac><mn>3</mn><mn>8</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mi>d</mi><mi>x</mi><mo>+</mo><msubsup><mo></mo><mn>2</mn><mn>3</mn></msubsup><mn>0</mn><mi>d</mi><mi>x</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">\int_{1}^{2}\frac{3}{8}x^{2}dx + \int_{2}^{3}0dx =</annotation></semantics></math></p>
<ol>
<li>What is the CDF for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(X \leq x)</annotation></semantics></math>? Integrate the curve to <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>x</mi><annotation encoding="application/x-tex">x</annotation></semantics></math>.</li>
</ol>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi>x</mi></msubsup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><msubsup><mo></mo><mn>0</mn><mi>x</mi></msubsup><mfrac><mn>3</mn><mn>8</mn></mfrac><msup><mi>t</mi><mn>2</mn></msup><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><msup><mi>x</mi><mn>3</mn></msup><mn>8</mn></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
F(x) = P(X \leq x) = \int_{- \infty}^{x}f(t)dt \\
= \int_{0}^{x}\frac{3}{8}t^{2}dt \\
= \frac{x^{3}}{8}
\end{array}</annotation></semantics></math></p>
<p>Important: include the range!</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mn>0</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mfrac><msup><mi>x</mi><mn>3</mn></msup><mn>8</mn></mfrac></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>2</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>1</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mn>2</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">F(x) = \begin{cases}
0 &amp; \text{for }x \leq 0 \\
\frac{x^{3}}{8} &amp; \text{for }0 &lt; x &lt; 2 \\
1 &amp; \text{for }x \geq 2
\end{cases}</annotation></semantics></math></p>
<ol>
<li>Find a point <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>a</mi><annotation encoding="application/x-tex">a</annotation></semantics></math> such that you integrate up to the point to find
exactly <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfrac><mn>1</mn><mn>2</mn></mfrac><annotation encoding="application/x-tex">\frac{1}{2}</annotation></semantics></math></li>
</ol>
<p>the area.</p>
<p>We want to find <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>a</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{1}{2} = P(X \leq a)</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>a</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>a</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><msup><mi>a</mi><mn>3</mn></msup><mn>8</mn></mfrac><mo></mo><mi>a</mi><mo>=</mo><mroot><mn>4</mn><mn>3</mn></mroot></mrow><annotation encoding="application/x-tex">\frac{1}{2} = P(X \leq a) = F(a) = \frac{a^{3}}{8} \Rightarrow a = \sqrt[3]{4}</annotation></semantics></math></p>
<p>Now let us discuss some named continuous distributions.</p>
<h3 id="the-continuous-uniform-distribution">The (continuous) uniform distribution</h3>
<p>The most simple and the best of the named distributions!</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack a,b\rbrack</annotation></semantics></math> be a bounded interval on the real line. A
random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the uniform distribution on the interval
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack a,b\rbrack</annotation></semantics></math> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the density function</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mfrac><mn>1</mn><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f(x) = \begin{cases}
\frac{1}{b - a} &amp; \text{for }x \in \lbrack a,b\rbrack \\
0 &amp; \text{for }x \notin \lbrack a,b\rbrack
\end{cases}</annotation></semantics></math></p>
<p>Abbreviate this by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Unif </mtext><mspace width="0.333em"></mspace></mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X\sim\text{ Unif }\lbrack a,b\rbrack</annotation></semantics></math>.</p>
<p>The graph of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mtext mathvariant="normal">Unif </mtext><mspace width="0.333em"></mspace></mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\text{Unif }\lbrack a,b\rbrack</annotation></semantics></math> is a constant line at
height <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfrac><mn>1</mn><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac><annotation encoding="application/x-tex">\frac{1}{b - a}</annotation></semantics></math> defined across <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack a,b\rbrack</annotation></semantics></math>. The
integral is just the area of a rectangle, and we can check it is 1.</p>
<p><em>Fact. </em></p>
<p>For <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Unif </mtext><mspace width="0.333em"></mspace></mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X\sim\text{ Unif }\lbrack a,b\rbrack</annotation></semantics></math>, its cumulative distribution
function (CDF) is given by:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>F</mi><mi>x</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo>&lt;</mo><mi>a</mi></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mfrac><mrow><mi>x</mi><mo></mo><mi>a</mi></mrow><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>1</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo>&gt;</mo><mi>b</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">F_{x}(x) = \begin{cases}
0 &amp; \text{for }x &lt; a \\
\frac{x - a}{b - a} &amp; \text{for }x \in \lbrack a,b\rbrack \\
1 &amp; \text{for }x &gt; b
\end{cases}</annotation></semantics></math></p>
<p><em>Fact. </em></p>
<p>If <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Unif </mtext><mspace width="0.333em"></mspace></mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X\sim\text{ Unif }\lbrack a,b\rbrack</annotation></semantics></math>, and
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo stretchy="false" form="postfix">]</mo><mo></mo><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack c,d\rbrack \subset \lbrack a,b\rbrack</annotation></semantics></math>, then
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>c</mi><mo></mo><mi>X</mi><mo></mo><mi>d</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mi>c</mi><mi>d</mi></msubsup><mfrac><mn>1</mn><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac><mi>d</mi><mi>x</mi><mo>=</mo><mfrac><mrow><mi>d</mi><mo></mo><mi>c</mi></mrow><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">P(c \leq X \leq d) = \int_{c}^{d}\frac{1}{b - a}dx = \frac{d - c}{b - a}</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math> be a uniform random variable on <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi></mi><mn>2</mn><mo>,</mo><mn>5</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack - 2,5\rbrack</annotation></semantics></math>. Find the
probability that its absolute value is at least 1.</p>
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math> takes values in the interval <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi></mi><mn>2</mn><mo>,</mo><mn>5</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack - 2,5\rbrack</annotation></semantics></math>, so the absolute
value is at least 1 iff.
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mi></mi><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">Y \in \lbrack - 2,1\rbrack \cup \lbrack 1,5\rbrack</annotation></semantics></math>.</p>
<p>The density function of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math> is
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mn>5</mn><mo></mo><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mn>2</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>7</mn></mfrac></mrow><annotation encoding="application/x-tex">f(x) = \frac{1}{5 - ( - 2)} = \frac{1}{7}</annotation></semantics></math> on <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi></mi><mn>2</mn><mo>,</mo><mn>5</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack - 2,5\rbrack</annotation></semantics></math>
and 0 everywhere else.</p>
<p>So,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mrow><mo stretchy="true" form="prefix">|</mo><mi>Y</mi><mo stretchy="true" form="postfix">|</mo></mrow><mo></mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>Y</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mi></mi><mn>2</mn><mo>,</mo><mi></mi><mn>1</mn><mo stretchy="false" form="postfix">]</mo><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo stretchy="false" form="postfix">]</mo><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mn>2</mn><mo></mo><mi>Y</mi><mo></mo><mi></mi><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>Y</mi><mo></mo><mn>5</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mfrac><mn>5</mn><mn>7</mn></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
P\left( |Y| \geq 1 \right) &amp; = P\left( Y \in \lbrack - 2, - 1\rbrack \cup \lbrack 1,5\rbrack \right) \\
&amp; = P( - 2 \leq Y \leq - 1) + P(1 \leq Y \leq 5) \\
&amp; = \frac{5}{7}
\end{aligned}</annotation></semantics></math></p>
<h3 id="the-exponential-distribution">The exponential distribution</h3>
<p>The geometric distribution can be viewed as modeling waiting times, in a
discrete setting, i.e. we wait for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n - 1</annotation></semantics></math> failures to arrive at the
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> success.</p>
<p>The exponential distribution is the continuous analogue to the geometric
distribution, in that we often use it to model waiting times in the
continuous sense. For example, the first custom to enter the barber
shop.</p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mi></mi></mrow><annotation encoding="application/x-tex">0 &lt; \lambda &lt; \infty</annotation></semantics></math>. A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the exponential
distribution with parameter <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>λ</mi><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has PDF</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mi>λ</mi><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mn>0</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f(x) = \begin{cases}
\lambda e^{- \lambda x} &amp; \text{for }x \geq 0 \\
0 &amp; \text{for }x &lt; 0
\end{cases}</annotation></semantics></math></p>
<p>Abbreviate this by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Exp</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Exp}(\lambda)</annotation></semantics></math>, the exponential
distribution with rate <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>λ</mi><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>.</p>
<p>The CDF of the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext mathvariant="normal">Exp</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\text{Exp}(\lambda)</annotation></semantics></math> distribution is given by:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">if </mtext><mspace width="0.333em"></mspace></mrow><mi>t</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>1</mn><mo></mo><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>t</mi></mrow></msup></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">if </mtext><mspace width="0.333em"></mspace></mrow><mi>t</mi><mo></mo><mn>0</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">F(t) + \begin{cases}
0 &amp; \text{if }t &lt; 0 \\
1 - e^{- \lambda t} &amp; \text{if }t \geq 0
\end{cases}</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Suppose the length of a phone call, in minutes, is well modeled by an
exponential random variable with a rate <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac></mrow><annotation encoding="application/x-tex">\lambda = \frac{1}{10}</annotation></semantics></math>.</p>
<ol>
<li><p>What is the probability that a call takes more than 8 minutes?</p></li>
<li><p>What is the probability that a call takes between 8 and 22 minutes?</p></li>
</ol>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be the length of the phone call, so that
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Exp</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Exp}\left( \frac{1}{10} \right)</annotation></semantics></math>. Then we can find the
desired probability by:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mn>8</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mn>1</mn><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mn>8</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mn>1</mn><mo></mo><msub><mi>F</mi><mi>x</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mn>8</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mn>1</mn><mo></mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><msup><mi>e</mi><mrow><mi></mi><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mn>8</mn></mrow></msup><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><msup><mi>e</mi><mrow><mi></mi><mfrac><mn>8</mn><mn>10</mn></mfrac></mrow></msup><mo></mo><mn>0.4493</mn></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
P(X &gt; 8) &amp; = 1 - P(X \leq 8) \\
&amp; = 1 - F_{x}(8) \\
&amp; = 1 - \left( 1 - e^{- \left( \frac{1}{10} \right) \cdot 8} \right) \\
&amp; = e^{- \frac{8}{10}} \approx 0.4493
\end{aligned}</annotation></semantics></math></p>
<p>Now to find <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>8</mn><mo>&lt;</mo><mi>X</mi><mo>&lt;</mo><mn>22</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P(8 &lt; X &lt; 22)</annotation></semantics></math>, we can take the difference in CDFs:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mn>8</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mn>22</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><msup><mi>e</mi><mrow><mi></mi><mfrac><mn>8</mn><mn>10</mn></mfrac></mrow></msup><mo></mo><msup><mi>e</mi><mrow><mi></mi><mfrac><mn>22</mn><mn>10</mn></mfrac></mrow></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo></mo><mn>0.3385</mn></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
&amp; P(X &gt; 8) - P(X \geq 22) \\
&amp; = e^{- \frac{8}{10}} - e^{- \frac{22}{10}} \\
&amp; \approx 0.3385
\end{aligned}</annotation></semantics></math></p>
<p><em>Fact (Memoryless property of the exponential distribution).</em></p>
<p>Suppose that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Exp</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Exp}(\lambda)</annotation></semantics></math>. Then for any <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">s,t &gt; 0</annotation></semantics></math>, we
have <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo>+</mo><mi>s</mi><mspace width="0.222em"></mspace><mo stretchy="false" form="prefix">|</mo><mspace width="0.222em"></mspace><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">P\left( X &gt; t + s~|~X &gt; t \right) = P(X &gt; s)</annotation></semantics></math></p>
<p>This is like saying if Ive been waiting 5 minutes and then 3 minutes
for the bus, what is the probability that Im gonna wait more than 5 + 3
minutes, given that Ive already waited 5 minutes? And thats precisely
equal to just the probability Im gonna wait more than 3 minutes.</p>
<p><em>Proof. </em></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo>+</mo><mi>s</mi><mspace width="0.222em"></mspace><mo stretchy="false" form="prefix">|</mo><mspace width="0.222em"></mspace><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo></mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo>+</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msup><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>t</mi></mrow></msup></mfrac><mo>=</mo><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>s</mi></mrow></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>&gt;</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
P\left( X &gt; t + s~|~X &gt; t \right) = \frac{P(X &gt; t + s \cap X &gt; t)}{P(X &gt; t)} \\
= \frac{P(X &gt; t + s)}{P(X &gt; t)} = \frac{e^{- \lambda(t + s)}}{e^{- \lambda t}} = e^{- \lambda s} \\
\equiv P(X &gt; s)
\end{array}</annotation></semantics></math></p>
<h3 id="gamma-distribution">Gamma distribution</h3>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>,</mo><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r,\lambda &gt; 0</annotation></semantics></math>. A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the <strong>gamma
distribution</strong> with parameters <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">(</mo><mi>r</mi><mo>,</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">(r,\lambda)</annotation></semantics></math> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is nonnegative and
has probability density function</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mfrac><mrow><msup><mi>λ</mi><mi>r</mi></msup><msup><mi>x</mi><mrow><mi>r</mi><mo></mo><mn>2</mn></mrow></msup></mrow><mrow><mi>Γ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>r</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></mfrac><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo></mo><mn>0</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn></mtd><mtd columnalign="left" style="text-align: left"><mrow><mtext mathvariant="normal">for </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f(x) = \begin{cases}
\frac{\lambda^{r}x^{r - 2}}{\Gamma(r)}e^{- \lambda x} &amp; \text{for }x \geq 0 \\
0 &amp; \text{for }x &lt; 0
\end{cases}</annotation></semantics></math></p>
<p>Abbreviate this by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Gamma</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>r</mi><mo>,</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Gamma}(r,\lambda)</annotation></semantics></math>.</p>
<p>The gamma function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Γ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>r</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\Gamma(r)</annotation></semantics></math> generalizes the factorial function and is
defined as</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Γ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>r</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><msup><mi>x</mi><mrow><mi>r</mi><mo></mo><mn>1</mn></mrow></msup><msup><mi>e</mi><mrow><mi></mi><mi>x</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> for </mtext><mspace width="0.333em"></mspace></mrow><mi>r</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\Gamma(r) = \int_{0}^{\infty}x^{r - 1}e^{- x}dx,\text{ for }r &gt; 0</annotation></semantics></math></p>
<p>Special case: <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Γ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>n</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mi>n</mi><mo></mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mi>!</mi></mrow><annotation encoding="application/x-tex">\Gamma(n) = (n - 1)!</annotation></semantics></math> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo></mo><msup><mi></mi><mo>+</mo></msup></mrow><annotation encoding="application/x-tex">n \in {\mathbb{Z}}^{+}</annotation></semantics></math>.</p>
<p><em>Remark. </em></p>
<p>The <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext mathvariant="normal">Exp</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\text{Exp}(\lambda)</annotation></semantics></math> distribution is a special case of the gamma
distribution, with parameter <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">r = 1</annotation></semantics></math>.</p>
<h2 id="the-normal-distribution">The normal distribution</h2>
<p>Also known as the Gaussian distribution, this is so important it gets
its own section.</p>
<p><em>Definition. </em></p>
<p>A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Z</mi><annotation encoding="application/x-tex">Z</annotation></semantics></math> has the <strong>standard normal distribution</strong> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Z</mi><annotation encoding="application/x-tex">Z</annotation></semantics></math>
has density function</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt></mfrac><msup><mi>e</mi><mrow><mi></mi><mfrac><msup><mi>x</mi><mn>2</mn></msup><mn>2</mn></mfrac></mrow></msup></mrow><annotation encoding="application/x-tex">\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{- \frac{x^{2}}{2}}</annotation></semantics></math> on the real
line. Abbreviate this by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Z</mi><mo></mo><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">Z\sim N(0,1)</annotation></semantics></math>.</p>
<p><em>Fact (CDF of a standard normal random variable).</em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Z</mi><mo></mo><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">Z\sim N(0,1)</annotation></semantics></math> be normally distributed. Then its CDF is given by
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi>x</mi></msubsup><mi>φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>s</mi><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi>x</mi></msubsup><mfrac><mn>1</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt></mfrac><msup><mi>e</mi><mfrac><mrow><mi></mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><msup><mi>s</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mn>2</mn></mfrac></msup><mi>d</mi><mi>s</mi></mrow><annotation encoding="application/x-tex">\Phi(x) = \int_{- \infty}^{x}\varphi(s)ds = \int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{\frac{- \left( - s^{2} \right)}{2}}ds</annotation></semantics></math></p>
<p>The normal distribution is so important, instead of the standard
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>f</mi><mrow><mi>Z</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msub><annotation encoding="application/x-tex">f_{Z(x)}</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>F</mi><mrow><mi>z</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msub><annotation encoding="application/x-tex">F_{z(x)}</annotation></semantics></math>, we use the special <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\varphi(x)</annotation></semantics></math> and
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\Phi(x)</annotation></semantics></math>.</p>
<p><em>Fact. </em></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><msup><mi>e</mi><mrow><mi></mi><mfrac><msup><mi>s</mi><mn>2</mn></msup><mn>2</mn></mfrac></mrow></msup><mi>d</mi><mi>s</mi><mo>=</mo><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt></mrow><annotation encoding="application/x-tex">\int_{- \infty}^{\infty}e^{- \frac{s^{2}}{2}}ds = \sqrt{2\pi}</annotation></semantics></math></p>
<p>No closed form of the standard normal CDF <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Φ</mi><annotation encoding="application/x-tex">\Phi</annotation></semantics></math> exists, so we are left
to either:</p>
<ul>
<li><p>approximate</p></li>
<li><p>use technology (calculator)</p></li>
<li><p>use the standard normal probability table in the textbook</p></li>
</ul>
<p>To evaluate negative values, we can use the symmetry of the normal
distribution to apply the following identity:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn><mo></mo><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\Phi( - x) = 1 - \Phi(x)</annotation></semantics></math></p>
<h3 id="general-normal-distributions">General normal distributions</h3>
<p>We can compute any other parameters of the normal distribution using the
standard normal.</p>
<p>The general family of normal distributions is obtained by linear or
affine transformations of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Z</mi><annotation encoding="application/x-tex">Z</annotation></semantics></math>. Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi><annotation encoding="application/x-tex">\mu</annotation></semantics></math> be real, and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\sigma &gt; 0</annotation></semantics></math>, then</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>=</mo><mi>σ</mi><mi>Z</mi><mo>+</mo><mi>μ</mi></mrow><annotation encoding="application/x-tex">X = \sigma Z + \mu</annotation></semantics></math> is also a normally distributed random variable
with parameters <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">(</mo><mi>μ</mi><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">\left( \mu,\sigma^{2} \right)</annotation></semantics></math>. The CDF of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> in terms
of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\Phi( \cdot )</annotation></semantics></math> can be expressed as</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><msub><mi>F</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>σ</mi><mi>Z</mi><mo>+</mo><mi>μ</mi><mo></mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>Z</mi><mo></mo><mfrac><mrow><mi>x</mi><mo></mo><mi>μ</mi></mrow><mi>σ</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mrow><mi>x</mi><mo></mo><mi>μ</mi></mrow><mi>σ</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
F_{X}(x) &amp; = P(X \leq x) \\
&amp; = P(\sigma Z + \mu \leq x) \\
&amp; = P\left( Z \leq \frac{x - \mu}{\sigma} \right) \\
&amp; = \Phi(\frac{x - \mu}{\sigma})
\end{aligned}</annotation></semantics></math></p>
<p>Also,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>F</mi><mi></mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mrow><mo stretchy="true" form="prefix">[</mo><mi>Φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mrow><mi>x</mi><mo></mo><mi>u</mi></mrow><mi>σ</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>σ</mi></mfrac><mi>φ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mrow><mi>x</mi><mo></mo><mi>u</mi></mrow><mi>σ</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mrow><mn>2</mn><mi>π</mi><msup><mi>σ</mi><mn>2</mn></msup></mrow></msqrt></mfrac><msup><mi>e</mi><mfrac><mrow><mi></mi><mrow><mo stretchy="true" form="prefix">(</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mn>2</mn><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfrac></msup></mrow><annotation encoding="application/x-tex">f(x) = F\prime(x) = \frac{d}{dx}\left\lbrack \Phi(\frac{x - u}{\sigma}) \right\rbrack = \frac{1}{\sigma}\varphi(\frac{x - u}{\sigma}) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{\frac{- \left( (x - \mu)^{2} \right)}{2\sigma^{2}}}</annotation></semantics></math></p>
<p><em>Definition. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi><annotation encoding="application/x-tex">\mu</annotation></semantics></math> be real and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\sigma &gt; 0</annotation></semantics></math>. A random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has the
<em>normal distribution</em> with mean <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi><annotation encoding="application/x-tex">\mu</annotation></semantics></math> and variance <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>σ</mi><mn>2</mn></msup><annotation encoding="application/x-tex">\sigma^{2}</annotation></semantics></math> if <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>
has density function</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mrow><mn>2</mn><mi>π</mi><msup><mi>σ</mi><mn>2</mn></msup></mrow></msqrt></mfrac><msup><mi>e</mi><mfrac><mrow><mi></mi><mrow><mo stretchy="true" form="prefix">(</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mrow><mn>2</mn><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfrac></msup></mrow><annotation encoding="application/x-tex">f(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{\frac{- \left( (x - \mu)^{2} \right)}{2\sigma^{2}}}</annotation></semantics></math></p>
<p>on the real line. Abbreviate this by
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>μ</mi><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim N\left( \mu,\sigma^{2} \right)</annotation></semantics></math>.</p>
<p><em>Fact. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>μ</mi><mo>,</mo><msup><mi>σ</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim N\left( \mu,\sigma^{2} \right)</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi><mo>=</mo><mi>a</mi><mi>X</mi><mo>+</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">Y = aX + b</annotation></semantics></math>. Then
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi><mo></mo><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>a</mi><mi>μ</mi><mo>+</mo><mi>b</mi><mo>,</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mi>σ</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">Y\sim N\left( a\mu + b,a^{2}\sigma^{2} \right)</annotation></semantics></math></p>
<p>That is, <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math> is normally distributed with parameters
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">(</mo><mi>a</mi><mi>μ</mi><mo>+</mo><mi>b</mi><mo>,</mo><msup><mi>a</mi><mn>2</mn></msup><msup><mi>σ</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">\left( a\mu + b,a^{2}\sigma^{2} \right)</annotation></semantics></math>. In particular,
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Z</mi><mo>=</mo><mfrac><mrow><mi>X</mi><mo></mo><mi>μ</mi></mrow><mi>σ</mi></mfrac><mo></mo><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">Z = \frac{X - \mu}{\sigma}\sim N(0,1)</annotation></semantics></math> is a standard normal variable.</p>
<h2 id="expectation">Expectation</h2>
<p>Lets discuss the <em>expectation</em> of a random variable, which is a similar
idea to the basic concept of <em>mean</em>.</p>
<p><em>Definition. </em></p>
<p>The expectation or mean of a discrete random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is the
weighted average, with weights assigned by the corresponding
probabilities.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><munder><mo></mo><mrow><mrow><mtext mathvariant="normal">all </mtext><mspace width="0.333em"></mspace></mrow><msub><mi>x</mi><mi>i</mi></msub></mrow></munder><msub><mi>x</mi><mi>i</mi></msub><mo></mo><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">E(X) = \sum_{\text{all }x_{i}}x_{i} \cdot p\left( x_{i} \right)</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Find the expected value of a single roll of a fair die.</p>
<ul>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>=</mo><mfrac><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> score </mtext><mspace width="0.333em"></mspace></mrow><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> dots</mtext></mrow></mfrac></mrow><annotation encoding="application/x-tex">X = \frac{\text{ score }}{\text{ dots}}</annotation></semantics></math></p></li>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></mrow><annotation encoding="application/x-tex">x = 1,2,3,4,5,6</annotation></semantics></math></p></li>
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>,</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>,</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>,</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>,</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>,</mo><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow><annotation encoding="application/x-tex">p(x) = \frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6}</annotation></semantics></math></p></li>
</ul>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><mn>1</mn><mo></mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>+</mo><mn>2</mn><mo></mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mi></mi><mo>+</mo><mn>6</mn><mo></mo><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow><annotation encoding="application/x-tex">E\lbrack x\rbrack = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6}\ldots + 6 \cdot \frac{1}{6}</annotation></semantics></math></p>
<h3 id="binomial-expected-value">Binomial expected value</h3>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><mi>n</mi><mi>p</mi></mrow><annotation encoding="application/x-tex">E\lbrack x\rbrack = np</annotation></semantics></math></p>
<h3 id="bernoulli-expected-value">Bernoulli expected value</h3>
<p>Bernoulli is just binomial with one trial.</p>
<p>Recall that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">P(X = 1) = p</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>0</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>1</mn><mo></mo><mi>p</mi></mrow><annotation encoding="application/x-tex">P(X = 0) = 1 - p</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>X</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><mn>1</mn><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mn>0</mn><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>0</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">E\lbrack X\rbrack = 1 \cdot P(X = 1) + 0 \cdot P(X = 0) = p</annotation></semantics></math></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>A</mi><annotation encoding="application/x-tex">A</annotation></semantics></math> be an event on <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Ω</mi><annotation encoding="application/x-tex">\Omega</annotation></semantics></math>. Its <em>indicator random variable</em> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>I</mi><mi>A</mi></msub><annotation encoding="application/x-tex">I_{A}</annotation></semantics></math>
is defined for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ω</mi><mo></mo><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\omega \in \Omega</annotation></semantics></math> by</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>A</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>ω</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mn>1</mn><mrow><mtext mathvariant="normal">, if </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mi>ω</mi><mo></mo><mi>A</mi></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn><mrow><mtext mathvariant="normal">, if </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mi>ω</mi><mo></mo><mi>A</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">I_{A}(\omega) = \begin{cases}
1\text{, if } &amp; \omega \in A \\
0\text{, if } &amp; \omega \notin A
\end{cases}</annotation></semantics></math></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msub><mi>I</mi><mi>A</mi></msub><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><mn>1</mn><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>A</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>A</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">E\left\lbrack I_{A} \right\rbrack = 1 \cdot P(A) = P(A)</annotation></semantics></math></p>
<h2 id="geometric-expected-value">Geometric expected value</h2>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">p \in \lbrack 0,1\rbrack</annotation></semantics></math> and <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Geom</mtext></mrow><mo stretchy="false" form="prefix">[</mo><mi>p</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X\sim\text{ Geom}\lbrack p\rbrack</annotation></semantics></math>
be a geometric RV with probability of success <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>p</mi><annotation encoding="application/x-tex">p</annotation></semantics></math>. Recall that the
p.m.f. is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><msup><mi>q</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">pq^{k - 1}</annotation></semantics></math>, where prob. of failure is defined by
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi><mo></mo><mn>1</mn><mo></mo><mi>p</mi></mrow><annotation encoding="application/x-tex">q ≔ 1 - p</annotation></semantics></math>.</p>
<p>Then</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>X</mi><mo stretchy="false" form="postfix">]</mo></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><mi>k</mi><mi>p</mi><msup><mi>q</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>p</mi><mo></mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><mi>k</mi><mo></mo><msup><mi>q</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
E\lbrack X\rbrack &amp; = \sum_{k = 1}^{\infty}kpq^{k - 1} \\
&amp; = p \cdot \sum_{k = 1}^{\infty}k \cdot q^{k - 1}
\end{aligned}</annotation></semantics></math></p>
<p>Now recall from calculus that you can differentiate a power series term
by term inside its radius of convergence. So for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo stretchy="true" form="prefix">|</mo><mi>t</mi><mo stretchy="true" form="postfix">|</mo></mrow><mo>&lt;</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|t| &lt; 1</annotation></semantics></math>,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><mi>k</mi><msup><mi>t</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><msup><mi>t</mi><mi>k</mi></msup><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><msup><mi>t</mi><mi>k</mi></msup><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo></mo><mi>t</mi></mrow></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup></mfrac></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo></mo><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><mi>k</mi><mi>p</mi><msup><mi>q</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mo>=</mo><mi>p</mi><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mo accent="false"></mo></munderover><mi>k</mi><msup><mi>q</mi><mrow><mi>k</mi><mo></mo><mn>1</mn></mrow></msup><mo>=</mo><mi>p</mi><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mn>1</mn><msup><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo></mo><mi>q</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>p</mi></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
\sum_{k = 1}^{\infty}kt^{k - 1} = \sum_{k = 1}^{\infty}\frac{d}{dt}t^{k} = \frac{d}{dt}\sum_{k = 1}^{\infty}t^{k} = \frac{d}{dt}\left( \frac{1}{1 - t} \right) = \frac{1}{(1 - t)^{2}} \\
\therefore E\lbrack x\rbrack = \sum_{k = 1}^{\infty}kpq^{k - 1} = p\sum_{k = 1}^{\infty}kq^{k - 1} = p\left( \frac{1}{(1 - q)^{2}} \right) = \frac{1}{p}
\end{array}</annotation></semantics></math></p>
<h3 id="expected-value-of-a-continuous-rv">Expected value of a continuous RV</h3>
<p><em>Definition. </em></p>
<p>The expectation or mean of a continuous random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> with density
function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>f</mi><annotation encoding="application/x-tex">f</annotation></semantics></math> is</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>x</mi><mo></mo><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">E\lbrack x\rbrack = \int_{- \infty}^{\infty}x \cdot f(x)dx</annotation></semantics></math></p>
<p>An alternative symbol is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>=</mo><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\mu = E\lbrack x\rbrack</annotation></semantics></math>.</p>
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi><annotation encoding="application/x-tex">\mu</annotation></semantics></math> is the “first moment” of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>, analogous to physics, its the
“center of gravity” of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p>
<p><em>Remark. </em></p>
<p>In general when moving between discrete and continuous RV, replace sums
with integrals, p.m.f. with p.d.f., and vice versa.</p>
<p><em>Example. </em></p>
<p>Suppose <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is a continuous RV with p.d.f.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mn>2</mn><mi>x</mi><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mn>0</mn><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mn>1</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mtext mathvariant="normal">elsewhere</mtext></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f_{X}(x) = \begin{cases}
2x\text{, } &amp; 0 &lt; x &lt; 1 \\
0\text{, } &amp; \text{elsewhere}
\end{cases}</annotation></semantics></math></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>X</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>x</mi><mo></mo><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo></mo><mn>0</mn><mn>1</mn></msubsup><mi>x</mi><mo></mo><mn>2</mn><mi>x</mi><mi>d</mi><mi>x</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mrow><annotation encoding="application/x-tex">E\lbrack X\rbrack = \int_{- \infty}^{\infty}x \cdot f(x)dx = \int_{0}^{1}x \cdot 2xdx = \frac{2}{3}</annotation></semantics></math></p>
<p><em>Example (Uniform expectation).</em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be a uniform random variable on the interval
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack a,b\rbrack</annotation></semantics></math> with <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Unif</mtext></mrow><mo stretchy="false" form="prefix">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X\sim\text{ Unif}\lbrack a,b\rbrack</annotation></semantics></math>. Find
the expected value of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>X</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>x</mi><mo></mo><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo></mo><mi>a</mi><mi>b</mi></msubsup><mfrac><mi>x</mi><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac><mi>d</mi><mi>x</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mn>1</mn><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac><msubsup><mo></mo><mi>a</mi><mi>b</mi></msubsup><mi>x</mi><mi>d</mi><mi>x</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mi>b</mi><mo></mo><mi>a</mi></mrow></mfrac><mo></mo><mfrac><mrow><msup><mi>b</mi><mn>2</mn></msup><mo></mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mn>2</mn></mfrac><mo>=</mo><munder><munder><mfrac><mrow><mi>b</mi><mo>+</mo><mi>a</mi></mrow><mn>2</mn></mfrac><mo accent="true"></mo></munder><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> midpoint formula</mtext></mrow></munder></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\lbrack X\rbrack = \int_{- \infty}^{\infty}x \cdot f(x)dx = \int_{a}^{b}\frac{x}{b - a}dx \\
= \frac{1}{b - a}\int_{a}^{b}xdx = \frac{1}{b - a} \cdot \frac{b^{2} - a^{2}}{2} = \underset{\text{ midpoint formula}}{\underbrace{\frac{b + a}{2}}}
\end{array}</annotation></semantics></math></p>
<p><em>Example (Exponential expectation).</em></p>
<p>Find the expected value of an exponential RV, with p.d.f.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mi>λ</mi><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mi>x</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mtext mathvariant="normal">elsewhere</mtext></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f_{X}(x) = \begin{cases}
\lambda e^{- \lambda x}\text{, } &amp; x &gt; 0 \\
0\text{, } &amp; \text{elsewhere}
\end{cases}</annotation></semantics></math></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>x</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>x</mi><mo></mo><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><mi>x</mi><mo></mo><mi>λ</mi><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mi>d</mi><mi>x</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mi>λ</mi><mo></mo><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><mi>x</mi><mo></mo><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mi>d</mi><mi>x</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mi>λ</mi><mo></mo><mrow><mo stretchy="true" form="prefix">[</mo><msubsup><mrow><mi></mi><mi>x</mi><mfrac><mn>1</mn><mi>λ</mi></mfrac><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mo stretchy="true" form="postfix">|</mo></mrow><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>x</mi><mo>=</mo><mi></mi></mrow></msubsup><mo></mo><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><mo></mo><mfrac><mn>1</mn><mi>λ</mi></mfrac><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mi>d</mi><mi>x</mi><mo stretchy="true" form="postfix">]</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mn>1</mn><mi>λ</mi></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\lbrack x\rbrack = \int_{- \infty}^{\infty}x \cdot f(x)dx = \int_{0}^{\infty}x \cdot \lambda e^{- \lambda x}dx \\
= \lambda \cdot \int_{0}^{\infty}x \cdot e^{- \lambda x}dx \\
= \lambda \cdot \left\lbrack \left. -x\frac{1}{\lambda}e^{- \lambda x} \right|_{x = 0}^{x = \infty} - \int_{0}^{\infty} - \frac{1}{\lambda}e^{- \lambda x}dx \right\rbrack \\
= \frac{1}{\lambda}
\end{array}</annotation></semantics></math></p>
<p><em>Example (Uniform dartboard).</em></p>
<p>Our dartboard is a disk of radius <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>r</mi><mn>0</mn></msub><annotation encoding="application/x-tex">r_{0}</annotation></semantics></math> and the dart lands uniformly
at random on the disk when thrown. Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>R</mi><annotation encoding="application/x-tex">R</annotation></semantics></math> be the distance of the dart
from the center of the disk. Find <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>R</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">E\lbrack R\rbrack</annotation></semantics></math> given density
function</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>f</mi><mi>R</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mfrac><mrow><mn>2</mn><mi>t</mi></mrow><msubsup><mi>r</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mn>0</mn><mo></mo><mi>t</mi><mo></mo><msub><mi>r</mi><mn>0</mn></msub></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mi>t</mi><mo>&lt;</mo><mn>0</mn><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> or </mtext><mspace width="0.333em"></mspace></mrow><mi>t</mi><mo>&gt;</mo><msub><mi>r</mi><mn>0</mn></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f_{R}(t) = \begin{cases}
\frac{2t}{r_{0}^{2}}\text{, } &amp; 0 \leq t \leq r_{0} \\
0\text{, } &amp; t &lt; 0\text{ or }t &gt; r_{0}
\end{cases}</annotation></semantics></math></p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>R</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>t</mi><msub><mi>f</mi><mi>R</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><msubsup><mo></mo><mn>0</mn><msub><mi>r</mi><mn>0</mn></msub></msubsup><mi>t</mi><mo></mo><mfrac><mrow><mn>2</mn><mi>t</mi></mrow><msubsup><mi>r</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><msub><mi>r</mi><mn>0</mn></msub></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\lbrack R\rbrack = \int_{- \infty}^{\infty}tf_{R}(t)dt \\
= \int_{0}^{r_{0}}t \cdot \frac{2t}{r_{0}^{2}}dt \\
= \frac{2}{3}r_{0}
\end{array}</annotation></semantics></math></p>
<h3 id="expectation-of-derived-values">Expectation of derived values</h3>
<p>If we can find the expected value of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>, can we find the expected value
of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>X</mi><mn>2</mn></msup><annotation encoding="application/x-tex">X^{2}</annotation></semantics></math>? More precisely, can we find
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{2} \right\rbrack</annotation></semantics></math>?</p>
<p>If the distribution is easy to see, then this is trivial. Otherwise we
have the following useful property:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msub><mo></mo><mrow><mrow><mtext mathvariant="normal">all </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi></mrow></msub><msup><mi>x</mi><mn>2</mn></msup><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{2} \right\rbrack = \int_{\text{all }x}x^{2}f_{X}(x)dx</annotation></semantics></math></p>
<p>(for continuous RVs).</p>
<p>And in the discrete case,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><munder><mo></mo><mrow><mrow><mtext mathvariant="normal">all </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi></mrow></munder><msup><mi>x</mi><mn>2</mn></msup><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{2} \right\rbrack = \sum_{\text{all }x}x^{2}p_{X}(x)</annotation></semantics></math></p>
<p>In fact <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{2} \right\rbrack</annotation></semantics></math> is so important that we call
it the <strong>mean square</strong>.</p>
<p><em>Fact. </em></p>
<p>More generally, a real valued function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">g(X)</annotation></semantics></math> defined on the range of
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is itself a random variable (with its own distribution).</p>
<p>We can find expected value of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">g(X)</annotation></semantics></math> by</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">E\left\lbrack g(x) \right\rbrack = \int_{- \infty}^{\infty}g(x)f(x)dx</annotation></semantics></math></p>
<p>or</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><munder><mo></mo><mrow><mrow><mtext mathvariant="normal">all </mtext><mspace width="0.333em"></mspace></mrow><mi>x</mi></mrow></munder><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">E\left\lbrack g(x) \right\rbrack = \sum_{\text{all }x}g(x)f(x)</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>You roll a fair die to determine the winnings (or losses) <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>W</mi><annotation encoding="application/x-tex">W</annotation></semantics></math> of a
player as follows:</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mi></mi><mn>1</mn><mo>,</mo><mspace width="0.222em"></mspace><mi>i</mi><mi>f</mi><mspace width="0.222em"></mspace><mi>t</mi><mi>h</mi><mi>e</mi><mspace width="0.222em"></mspace><mi>r</mi><mi>o</mi><mi>l</mi><mi>l</mi><mspace width="0.222em"></mspace><mi>i</mi><mi>s</mi><mspace width="0.222em"></mspace><mn>1</mn><mo>,</mo><mspace width="0.222em"></mspace><mn>2</mn><mo>,</mo><mspace width="0.222em"></mspace><mi>o</mi><mi>r</mi><mspace width="0.222em"></mspace><mn>3</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>1</mn><mo>,</mo><mspace width="0.222em"></mspace><mi>i</mi><mi>f</mi><mspace width="0.222em"></mspace><mi>t</mi><mi>h</mi><mi>e</mi><mspace width="0.222em"></mspace><mi>r</mi><mi>o</mi><mi>l</mi><mi>l</mi><mspace width="0.222em"></mspace><mi>i</mi><mi>s</mi><mspace width="0.222em"></mspace><mi>a</mi><mspace width="0.222em"></mspace><mn>4</mn></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>3</mn><mo>,</mo><mspace width="0.222em"></mspace><mi>i</mi><mi>f</mi><mspace width="0.222em"></mspace><mi>t</mi><mi>h</mi><mi>e</mi><mspace width="0.222em"></mspace><mi>r</mi><mi>o</mi><mi>l</mi><mi>l</mi><mspace width="0.222em"></mspace><mi>i</mi><mi>s</mi><mspace width="0.222em"></mspace><mn>5</mn><mspace width="0.222em"></mspace><mi>o</mi><mi>r</mi><mspace width="0.222em"></mspace><mn>6</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">W = \begin{cases}
- 1,\ if\ the\ roll\ is\ 1,\ 2,\ or\ 3 \\
1,\ if\ the\ roll\ is\ a\ 4 \\
3,\ if\ the\ roll\ is\ 5\ or\ 6
\end{cases}</annotation></semantics></math></p>
<p>What is the expected winnings/losses for the player during 1 roll of the
die?</p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> denote the outcome of the roll of the die. Then we can define
our random variable as <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi><mo>=</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">W = g(X)</annotation></semantics></math> where the function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>g</mi><annotation encoding="application/x-tex">g</annotation></semantics></math> is defined by
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>2</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi></mi><mn>1</mn></mrow><annotation encoding="application/x-tex">g(1) = g(2) = g(3) = - 1</annotation></semantics></math> and so on.</p>
<p>Note that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>W</mi><mo>=</mo><mi></mi><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>1</mn><mo></mo><mi>X</mi><mo>=</mo><mn>2</mn><mo></mo><mi>X</mi><mo>=</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">P(W = - 1) = P(X = 1 \cup X = 2 \cup X = 3) = \frac{1}{2}</annotation></semantics></math>.
Likewise <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>W</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>4</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>6</mn></mfrac></mrow><annotation encoding="application/x-tex">P(W = 1) = P(X = 4) = \frac{1}{6}</annotation></semantics></math>, and
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>W</mi><mo>=</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo>=</mo><mn>5</mn><mo></mo><mi>X</mi><mo>=</mo><mn>6</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow><annotation encoding="application/x-tex">P(W = 3) = P(X = 5 \cup X = 6) = \frac{1}{3}</annotation></semantics></math>.</p>
<p>Then <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>W</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>W</mi><mo>=</mo><mi></mi><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>W</mi><mo>=</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>W</mi><mo>=</mo><mn>3</mn><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mi></mi><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>+</mo><mfrac><mn>1</mn><mn>6</mn></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\left\lbrack g(X) \right\rbrack = E\lbrack W\rbrack = ( - 1) \cdot P(W = - 1) + (1) \cdot P(W = 1) + (3) \cdot P(W = 3) \\
= - \frac{1}{2} + \frac{1}{6} + 1 = \frac{2}{3}
\end{array}</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>A stick of length <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>l</mi><annotation encoding="application/x-tex">l</annotation></semantics></math> is broken at a uniformly chosen random location.
What is the expected length of the longer piece?</p>
<p>Idea: if you break it before the halfway point, then the longer piece
has length given by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>l</mi><mo></mo><mi>x</mi></mrow><annotation encoding="application/x-tex">l - x</annotation></semantics></math>. If you break it after the halfway point,
the longer piece has length <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>x</mi><annotation encoding="application/x-tex">x</annotation></semantics></math>.</p>
<p>Let the interval <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mi>l</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,l\rbrack</annotation></semantics></math> represent the stick and let
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Unif</mtext></mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mi>l</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">X\sim\text{ Unif}\lbrack 0,l\rbrack</annotation></semantics></math> be the location where the stick is
broken. Then <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has density <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>l</mi></mfrac></mrow><annotation encoding="application/x-tex">f(x) = \frac{1}{l}</annotation></semantics></math> on
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mi>l</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,l\rbrack</annotation></semantics></math> and 0 elsewhere.</p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">g(x)</annotation></semantics></math> be the length of the longer piece when the stick is broken at
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>x</mi><annotation encoding="application/x-tex">x</annotation></semantics></math>,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mn>1</mn><mo></mo><mi>x</mi><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mn>0</mn><mo></mo><mi>x</mi><mo>&lt;</mo><mfrac><mi>l</mi><mn>2</mn></mfrac></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mi>x</mi><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mfrac><mn>1</mn><mn>2</mn></mfrac><mo></mo><mi>x</mi><mo></mo><mi>l</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">g(x) = \begin{cases}
1 - x\text{, } &amp; 0 \leq x &lt; \frac{l}{2} \\
x\text{, } &amp; \frac{1}{2} \leq x \leq l
\end{cases}</annotation></semantics></math></p>
<p>Then <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>g</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo></mo><mn>0</mn><mfrac><mi>l</mi><mn>2</mn></mfrac></msubsup><mfrac><mrow><mi>l</mi><mo></mo><mi>x</mi></mrow><mi>l</mi></mfrac><mi>d</mi><mi>x</mi><mo>+</mo><msubsup><mo></mo><mfrac><mi>l</mi><mn>2</mn></mfrac><mi>l</mi></msubsup><mfrac><mi>x</mi><mi>l</mi></mfrac><mi>d</mi><mi>x</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>l</mi></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\left\lbrack g(X) \right\rbrack = \int_{- \infty}^{\infty}g(x)f(x)dx = \int_{0}^{\frac{l}{2}}\frac{l - x}{l}dx + \int_{\frac{l}{2}}^{l}\frac{x}{l}dx \\
= \frac{3}{4}l
\end{array}</annotation></semantics></math></p>
<p>So we expect the longer piece to be <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfrac><mn>3</mn><mn>4</mn></mfrac><annotation encoding="application/x-tex">\frac{3}{4}</annotation></semantics></math> of the total length,
which is a bit pathological.</p>
<h3 id="moments-of-a-random-variable">Moments of a random variable</h3>
<p>We continue discussing expectation but we introduce new terminology.</p>
<p><em>Fact. </em></p>
<p>The <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> moment (or <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> raw moment) of a discrete
random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> with p.m.f. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">p_{X}(x)</annotation></semantics></math> is the expectation</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mi>n</mi></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><munder><mo></mo><mi>k</mi></munder><msup><mi>k</mi><mi>n</mi></msup><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mi>μ</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{n} \right\rbrack = \sum_{k}k^{n}p_{X}(k) = \mu_{n}</annotation></semantics></math></p>
<p>If <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is continuous, then we have analogously</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mi>n</mi></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><msup><mi>x</mi><mi>n</mi></msup><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mi>μ</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{n} \right\rbrack = \int_{- \infty}^{\infty}x^{n}f_{X}(x) = \mu_{n}</annotation></semantics></math></p>
<p>The <strong>deviation</strong> is given by <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>σ</mi><annotation encoding="application/x-tex">\sigma</annotation></semantics></math> and the <strong>variance</strong> is given by
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>σ</mi><mn>2</mn></msup><annotation encoding="application/x-tex">\sigma^{2}</annotation></semantics></math> and</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><msub><mi>μ</mi><mn>2</mn></msub><mo></mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><msub><mi>μ</mi><mn>1</mn></msub><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\sigma^{2} = \mu_{2} - \left( \mu_{1} \right)^{2}</annotation></semantics></math></p>
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>μ</mi><mn>3</mn></msub><annotation encoding="application/x-tex">\mu_{3}</annotation></semantics></math> is used to measure “skewness” / asymmetry of a distribution.
For example, the normal distribution is very symmetric.</p>
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>μ</mi><mn>4</mn></msub><annotation encoding="application/x-tex">\mu_{4}</annotation></semantics></math> is used to measure kurtosis/peakedness of a distribution.</p>
<h3 id="central-moments">Central moments</h3>
<p>Previously we discussed “raw moments.” Be careful not to confuse them
with <em>central moments</em>.</p>
<p><em>Fact. </em></p>
<p>The <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> central moment of a discrete random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>
with p.m.f. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">p_{X}(x)</annotation></semantics></math> is the expected value of the difference about the
mean raised to the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> power</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><munder><mo></mo><mi>k</mi></munder><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>μ</mi><msub><mi></mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">E\left\lbrack (X - \mu)^{n} \right\rbrack = \sum_{k}(k - \mu)^{n}p_{X}(k) = \mu\prime_{n}</annotation></semantics></math></p>
<p>And of course in the continuous case,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>n</mi></msup><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi>μ</mi><msub><mi></mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">E\left\lbrack (X - \mu)^{n} \right\rbrack = \int_{- \infty}^{\infty}(x - \mu)^{n}f_{X}(x) = \mu\prime_{n}</annotation></semantics></math></p>
<p>In particular,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>μ</mi><msub><mi></mi><mn>1</mn></msub><mo>=</mo><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>1</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>1</mn></msup><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><msubsup><mo></mo><mi></mi><mi></mi></msubsup><mi>x</mi><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><mi>μ</mi><msub><mi>f</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi><mo>=</mo><mi>μ</mi><mo></mo><mi>μ</mi><mo></mo><mn>1</mn><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mi>μ</mi><msub><mi></mi><mn>2</mn></msub><mo>=</mo><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>μ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mi>σ</mi><mi>X</mi><mn>2</mn></msubsup><mo>=</mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Var</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo stretchy="true" form="postfix">)</mo></mrow></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
\mu\prime_{1} = E\left\lbrack (X - \mu)^{1} \right\rbrack = \int_{- \infty}^{\infty}(x - \mu)^{1}f_{X}(x)dx \\
= \int_{\infty}^{\infty}xf_{X}(x)dx = \int_{- \infty}^{\infty}\mu f_{X}(x)dx = \mu - \mu \cdot 1 = 0 \\
\mu\prime_{2} = E\left\lbrack (X - \mu)^{2} \right\rbrack = \sigma_{X}^{2} = \text{ Var}(X)
\end{array}</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math> be a uniformly chosen integer from
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi></mi><mo>,</mo><mi>m</mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ 0,1,2,\ldots,m \right\}</annotation></semantics></math>. Find the first and second moment of
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math>.</p>
<p>The p.m.f. of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Y</mi><annotation encoding="application/x-tex">Y</annotation></semantics></math> is <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>Y</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>k</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow><annotation encoding="application/x-tex">p_{Y}(k) = \frac{1}{m + 1}</annotation></semantics></math> for
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>k</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mi>m</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">k \in \lbrack 0,m\rbrack</annotation></semantics></math>. Thus,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>Y</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>m</mi></munderover><mi>k</mi><mfrac><mn>1</mn><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mfrac><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>m</mi></munderover><mi>k</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mi>m</mi><mn>2</mn></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\lbrack Y\rbrack = \sum_{k = 0}^{m}k\frac{1}{m + 1} = \frac{1}{m + 1}\sum_{k = 0}^{m}k \\
= \frac{m}{2}
\end{array}</annotation></semantics></math></p>
<p>Then,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>Y</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><munderover><mo></mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>m</mi></munderover><msup><mi>k</mi><mn>2</mn></msup><mfrac><mn>1</mn><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mn>1</mn><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>m</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><mn>6</mn></mfrac></mrow><annotation encoding="application/x-tex">E\left\lbrack Y^{2} \right\rbrack = \sum_{k = 0}^{m}k^{2}\frac{1}{m + 1} = \frac{1}{m + 1} = \frac{m(2m + 1)}{6}</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">c &gt; 0</annotation></semantics></math> and let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>U</mi><annotation encoding="application/x-tex">U</annotation></semantics></math> be a uniform random variable on the interval
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mi>c</mi><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\lbrack 0,c\rbrack</annotation></semantics></math>. Find the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> moment for <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>U</mi><annotation encoding="application/x-tex">U</annotation></semantics></math> for all
positive integers <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>n</mi><annotation encoding="application/x-tex">n</annotation></semantics></math>.</p>
<p>The density function of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>U</mi><annotation encoding="application/x-tex">U</annotation></semantics></math> is</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">{</mo><mtable><mtr><mtd columnalign="left" style="text-align: left"><mfrac><mn>1</mn><mi>c</mi></mfrac><mrow><mtext mathvariant="normal">, if </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mi>x</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>0</mn><mo>,</mo><mi>c</mi><mo stretchy="false" form="postfix">]</mo></mtd></mtr><mtr><mtd columnalign="left" style="text-align: left"><mn>0</mn><mrow><mtext mathvariant="normal">, </mtext><mspace width="0.333em"></mspace></mrow></mtd><mtd columnalign="left" style="text-align: left"><mtext mathvariant="normal">otherwise</mtext></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">f(x) = \begin{cases}
\frac{1}{c}\text{, if } &amp; x \in \lbrack 0,c\rbrack \\
0\text{, } &amp; \text{otherwise}
\end{cases}</annotation></semantics></math></p>
<p>Therefore the <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> moment of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>U</mi><annotation encoding="application/x-tex">U</annotation></semantics></math> is,</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>U</mi><mi>n</mi></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mrow><mi></mi><mi></mi></mrow><mi></mi></msubsup><msup><mi>x</mi><mi>n</mi></msup><mi>f</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>x</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">E\left\lbrack U^{n} \right\rbrack = \int_{- \infty}^{\infty}x^{n}f(x)dx</annotation></semantics></math></p>
<p><em>Example. </em></p>
<p>Suppose the random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Exp</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Exp}(\lambda)</annotation></semantics></math>. Find the second
moment of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mn>2</mn></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><msup><mi>x</mi><mn>2</mn></msup><mi>λ</mi><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mi>d</mi><mi>x</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mn>1</mn><msup><mi>λ</mi><mn>2</mn></msup></mfrac><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><msup><mi>u</mi><mn>2</mn></msup><msup><mi>e</mi><mrow><mi></mi><mi>u</mi></mrow></msup><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mo>=</mo><mfrac><mn>1</mn><msup><mi>λ</mi><mn>2</mn></msup></mfrac><mi>Γ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><mi>!</mi></mrow><msup><mi>λ</mi><mn>2</mn></msup></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{array}{r}
E\left\lbrack X^{2} \right\rbrack = \int_{0}^{\infty}x^{2}\lambda e^{- \lambda x}dx \\
= \frac{1}{\lambda^{2}}\int_{0}^{\infty}u^{2}e^{- u}du \\
= \frac{1}{\lambda^{2}}\Gamma(2 + 1) = \frac{2!}{\lambda^{2}}
\end{array}</annotation></semantics></math></p>
<p><em>Fact. </em></p>
<p>In general, to find teh <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>n</mi><mtext mathvariant="normal">th</mtext></msup><annotation encoding="application/x-tex">n^{\text{th}}</annotation></semantics></math> moment of
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo></mo><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> Exp</mtext></mrow><mrow><mo stretchy="true" form="prefix">(</mo><mi>λ</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">X\sim\text{ Exp}(\lambda)</annotation></semantics></math>,
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mrow><mo stretchy="true" form="prefix">[</mo><msup><mi>X</mi><mi>n</mi></msup><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><msubsup><mo></mo><mn>0</mn><mi></mi></msubsup><msup><mi>x</mi><mi>n</mi></msup><mi>λ</mi><msup><mi>e</mi><mrow><mi></mi><mi>λ</mi><mi>x</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><mfrac><mrow><mi>n</mi><mi>!</mi></mrow><msup><mi>λ</mi><mi>n</mi></msup></mfrac></mrow><annotation encoding="application/x-tex">E\left\lbrack X^{n} \right\rbrack = \int_{0}^{\infty}x^{n}\lambda e^{- \lambda x}dx = \frac{n!}{\lambda^{n}}</annotation></semantics></math></p>
<h3 id="median-and-quartiles">Median and quartiles</h3>
<p>When a random variable has rare (abnormal) values, its expectation may
be a bad indicator of where the center of the distribution lies.</p>
<p><em>Definition. </em></p>
<p>The <strong>median</strong> of a random variable <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> is any real value <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>m</mi><annotation encoding="application/x-tex">m</annotation></semantics></math> that
satisfies</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>m</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mspace width="0.333em"></mspace><mtext mathvariant="normal"> and </mtext><mspace width="0.333em"></mspace></mrow><mi>P</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>X</mi><mo></mo><mi>m</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">P(X \geq m) \geq \frac{1}{2}\text{ and }P(X \leq m) \geq \frac{1}{2}</annotation></semantics></math></p>
<p>With half the probability on both <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mi>X</mi><mo></mo><mi>m</mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ X \leq m \right\}</annotation></semantics></math> and
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mi>X</mi><mo></mo><mi>m</mi><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ X \geq m \right\}</annotation></semantics></math>, the median is representative of the
midpoint of the distribution. We say that the median is more <em>robust</em>
because it is less affected by outliers. It is not necessarily unique.</p>
<p><em>Example. </em></p>
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> be discretely uniformly distributed in the set
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">{</mo><mi></mi><mn>100</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>,</mo><mn>3</mn><mo>,</mo><mi></mi><mo>,</mo><mn>9</mn><mo stretchy="true" form="postfix">}</mo></mrow><annotation encoding="application/x-tex">\left\{ - 100,1,2,,3,\ldots,9 \right\}</annotation></semantics></math> so <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math> has probability mass
function <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mn>100</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mi></mi><mo>=</mo><msub><mi>p</mi><mi>X</mi></msub><mrow><mo stretchy="true" form="prefix">(</mo><mn>9</mn><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">p_{X}( - 100) = p_{X}(1) = \cdots = p_{X}(9)</annotation></semantics></math></p>
<p>Find the expected value and median of <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>X</mi><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p>
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo stretchy="false" form="prefix">[</mo><mi>X</mi><mo stretchy="false" form="postfix">]</mo><mo>=</mo><mrow><mo stretchy="true" form="prefix">(</mo><mi></mi><mn>100</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mo>+</mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>1</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mo>+</mo><mi></mi><mo>+</mo><mrow><mo stretchy="true" form="prefix">(</mo><mn>9</mn><mo stretchy="true" form="postfix">)</mo></mrow><mo></mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mo>=</mo><mi></mi><mn>5.5</mn></mrow><annotation encoding="application/x-tex">E\lbrack X\rbrack = ( - 100) \cdot \frac{1}{10} + (1) \cdot \frac{1}{10} + \cdots + (9) \cdot \frac{1}{10} = - 5.5</annotation></semantics></math></p>
<p>While the median is any number <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo></mo><mo stretchy="false" form="prefix">[</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo stretchy="false" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">m \in \lbrack 4,5\rbrack</annotation></semantics></math>.</p>
<p>The median reflects the fact that 90% of the values and probability is
in the range <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi></mi><mo>,</mo><mn>9</mn></mrow><annotation encoding="application/x-tex">1,2,\ldots,9</annotation></semantics></math> while the mean is heavily influenced by the
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi></mi><mn>100</mn></mrow><annotation encoding="application/x-tex">- 100</annotation></semantics></math> value.</p></main>
</article>
<footer class="mt-14 md:mt-24 pb-12 font-light">
<hr
class="border-0 dark:bg-muted-dark bg-muted-light rounded-xl h-0.5 mb-4"
/>
<p class="text-sm leading-relaxed">
&copy; 2024 Youwen Wu. Generated by
<a
href="https://jaspervdj.be/hakyll/"
class="external-link-muted"
target="__blank"
>Hakyll.</a
>
View the source
<a
href="https://github.com/couscousdude/blog"
class="external-link-muted"
target="__blank"
>on GitHub.</a
>
</p>
<p class="text-sm leading-relaxed mt-2">
Content freely available under
<a
class="external-link-muted"
target="__blank"
href="https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en"
><span class="smallcaps">CC BY-NC-SA</span> 4.0</a
>
unless otherwise noted.
</p>
</footer>
<script defer src="./out/bundle.js"></script>
</body>
</html>