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Abstract

Densely structured pruning methods utilizing simple pruning heuristics are
capable of delivering immediate compression and acceleration benefits with
acceptable benign performances. However, empirical findings indicate such
naively pruned networks are extremely fragile under simple adversarial attacks.
Naturally, we would be interested in knowing if such phenomenon also hold true
to carefully designed modern structured pruning methods. If so, then to what
extent the severity? And what kind of remedies are available? Unfortunately,
both the questions and the solution remain largely unaddressed: no prior art
is able to provide a thorough investigation on the adversarial performance of
modern structured pruning methods (spoiler: it is not good), yet the few works
that attempt to provide mitigation often done so at various extra costs with only
to-be-desired performance. In this work, we answer both questions by fairly
and comprehensively investigate the adversarial performance of 10+ popular
structured pruning methods. Solution-wise, we take advantage of Grouped Kernel
Pruning (GKP)’s recent success in pushing densely structured pruning freedom
to a more fine-grained level. By mixing up kernel smoothness — a classic
robustness-related kernel-level metric — into a modified GKP procedure, we
hereby present an one-shot-post-train-data-free GKP method capable of advancing
SOTA performance on both benign and adversarial scale, while requiring no extra
(in fact, often less) cost than a standard pruning procedure.

1 Introduction

Convolutional neural networks (CNNs) have demonstrated solid performance on tasks centered
around computer vision. However, with modern CNNs growing in both widths and depths, the issue
of over-parameterization has drawn increasing attention due to such networks often requiring large
computational resources and memory capacity. To mitigate the burden, network pruning — the study
of removing redundant parameters from original networks without significant performance loss —
has become a popular approach for its simplicity and directness.

* Equal contribution. Order determined alphabetically by last name.
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Despite the popularity of the pruning field in general, few prior arts have been available to provide
improved adversarial robustness under the constraint of (densely) structured pruning; even
though empirical findings show vanilla structured pruning methods implemented with naive pruning
strategies often experience huge performance drop on such adversarial tasks [Wang et al., 2018,
Sehwag et al., 2020, Vemparala et al., 2021]. More concerning, no prior art has made an effort to
provide a comprehensive investigation on whether the same phenomenon also exists under carefully
designed modern structure pruning methods, where such methods are often capable of delivering
excellent benign accuracy retention after pruning (sometimes, even improvements).

Below we provide a walk-through of why are such a constraint (densely structured) and property
(being adversarially robust) considered preferable and important, to how we developed our solution
by leveraging the power of increased structural pruning freedom (grouped kernel pruning) with
kernel-level metrics (kernel smoothness). In the later sections of this paper, we replicate and test
out around 13 popular densely structured pruning methods and variants against various white box
(evasion) adversarial attacks, where our proposed method showcases clear dominance.

1.1 Structured v.s. Unstructured Pruning: Accuracy-Efficiency Trade-off

Most of the existing CNN pruning methods can be roughly categorized into structured and unstruc-
tured pruning. Note we said roughly because there is no universally agreed delineation between
structured and unstructured pruning methods. The general consensus is that methods considered
more unstructured often enjoy a higher degree of freedom on where to apply their pruning strategies
(e.g., weight-level pruning) and therefore resulting in better accuracy retention.

In contrast, structured pruning methods often prune weights in a grouped manner following some
kind of architecturally-defined constraints (e.g., filter-level pruning). Compared to their unstructured
counterparts, structured pruning methods are more hardware-friendly and easier to obtain acceler-
ation on commodity harddware, though at the cost of worse accuracy retention. This is due to an
unstructurally pruned network is often left with pruned parameters randomly distributed in the weight
matrix, leading to poor data reuse and locality [Yang et al., 2018]. It barely has wall-clock time speed
up without supports like custom-indexing, special operation design, sparse operation libraries, or
even dedicated hardware setups [Yang et al., 2018, Han et al., 2016].

Among all structured pruning methods, one popular line of research is to produce pruned networks
that are entirely dense, a.k.a. densely structured, where the pruned weights are stored in the normal
dense tensor format. Such format of a pruned network is considered to be most library/hardware-
friendly and, therefore, most deployable in a practical context. With such significant benefits, densely
structured pruning methods consist of the absolute majority of structured pruning methods.
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Figure 1: Visualization of different pruning granularities.

Densely structured pruning methods come with different pruning granularities, where a significant
portion of prior arts prune at a filter or channel level. These two types of pruning are historically
considered to be the limit of densely structured pruning, as showcased in Figure 1: if we go down one
more level, we will have kernel pruning, yet its pruned network is not dense. This is until recently,
authors from Zhong et al. [2022] utilized kernel pruning with grouped convolution, where they prune
at a grouped kernel level to have an entirely dense pruned network. To the best of our knowledge,
grouped kernel pruning carries the highest degree of pruning freedom among all densely structured
pruning methods.
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1.2 Pruned Models Are Fragile Under Adversarial Attacks — But Why Do We Care?

Empirical findings like Wang et al. [2018] suggest that although pruned neural networks may have
acceptable benign accuracy, they are often more vulnerable to adversarial attacks. Adversarial
robustness is recognized as a long-standing metric to evaluate model quality, as a model with
undesired adversarial robustness can be easily exploited to produce wrong and potentially harmful
output, resulting in fairness and accountability issues.

We would argue such robustness properties are especially valued under the context of (structured)
pruning, where pruned models are often deployed to resource-constraint devices with less central
oversight available and required to be executed in a more real-time manner. Imagine if an OCR model
for real-time check redeeming can be maliciously exploited to read the number 1 as 9; the result will
surely be unpleasant for many parties involved.

To alleviate such a problem (though not under a pruning context), prior arts like Wang et al. [2020]
demonstrate the adversarial robustness of a convolutional network is largely correlated to its sensi-
tiveness to high-frequency components (HFC), where such sensitiveness can be mitigated with some
simple kernel-level operations like kernel smoothness.

1.3 Solution: Grouped Kernel Pruning with Adversarial-Robustness-Boosting Kernel Metrics

With the recent Grouped Kernel Pruning (GKP) framework pushed the pruning freedom of densely
structured pruning to a (close) kernel-level [Zhong et al., 2022], we explore the unique possibility of
mixing up adversarial-robustness-boosting kernel metrics — such as kernel smoothness — into the
procedure of GKP. We present you Smoothly Robust Grouped Kernel Pruning (SR-GKP), a densely
structured pruning method that works in a simple post-train one-shot manner, but often capable of
delivering competitive benign performance and much stronger adversarial performance against SOTA
filter and channel pruning methods with much more sophisticated procedures required. Solution-wise,
our main claims and contributions are:

• Free improvement on adversarial robustness Our method has no extra (in fact, often less) cost
compared to a standard pruning method, making the gained adversarial robustness entirely free.

• One-shot & post-train: the simplest procedure with most compatibility. The procedure of our
method is both one-shot and post-train, which means it is compatible with any trained CNNs (as it
does not interfere with the training pipeline), yet straightforward to execute.

• Raise attention to the important but overlooked field of adversarially robust structured
pruning. Our method is among the few structured pruning methods capable of delivering pruned
networks with improved adversarial performance — a field presents with severe problems, but
receives little recognition nor solutions.

On the investigation side, we are the first to comprehensively reveal:

• Drastic adversarial performance difference under a similar benign report. We found that while
different carefully designed modern densely structured pruning methods may showcase similar
benign performance, some are done so at the cost of adversarial robustness.

• One less reason for filter/ pruning: further endorsing GKP. Filter and channel pruning methods
have dominated the field of densely structured pruning for years; our work — together with
Zhong et al. [2022] and Park et al. [2023] — showcased that when done right, grouped kernel
pruning-based methods are superior under both benign and adversarial tasks, making it a promising
direction for future densely structured pruning exploration.

For added bonuses, we are the first ones to reproduce and comprehensively report the benign and
adversarial performances of multiple structured pruning methods under a fair setting. We believe the
lack of such fair and comprehensive reports (on both benign and adversarial tasks) is mainly due to
the lack of user-friendly tools. Thus, alongside our method implementation and checkpoint files, we
also provide the pruning community a lightweight open-sourced tool capable of a plug-and-play
style of testing different victim models with various adversarial attacks while supporting all
procedures a modern pruning method may require, pending acceptance of this manuscript.

3



2 Related Work and Discussion

Due to page limitation, we will discuss related work regarding white box evasion adversarial attacks,
adversarially robust structured pruning, and grouped kernel pruning. Other related topics, such as the
compression/acceleration implications of structured and unstructured pruning methods, and input
component frequency with kernel smoothness, will be introduced in Appendix B.

Adversarial Attacks. Neural networks are known to be vulnerable to adversarial attacks, i.e., a
small perturbation applied to the inputs can mislead models to make wrong prediction Szegedy et al.
[2014], Goodfellow et al. [2014].

In practice, adversarial attacks are often categorized as white-box and black-box evasion attacks,
the difference being white-box attacks have access to the entirety of the model, including input
features, architectures, and model parameters, while black-box attacks’ access is often constrained
(e.g.„, only input-output pair). Thus, white-box attacks are almost always more effective and efficient
than black-box; in fact, many classic black-box attacks are constructed in a way to approximate the
information which is directly accessible by white-box attacks (e.g., gradient) [Chen et al., 2020].
Given one significant use case of the pruned model is edge-device deployments, where the model is
more likely to be accessed; also, to have a straightforward workflow with harder challenges posing,
we opt for white-box attacks for the scope of this paper.

Structured Pruning for Adversarial Robustness. Structured pruning methods, which arguably
carry the most practical significance, has been heavily studied throughout the years [Molchanov
et al., 2017, Yu et al., 2018, He et al., 2019, Wang et al., 2019a,b, Lin et al., 2019, He et al., 2018,
Li et al., 2021, Zhong et al., 2022]. Despite their popularity, few of them focus on adversarial
robustness. To the best of our knowledge, there are only three prior arts presented structured pruning
methods while claiming improved performance on adversarial robustness metrics [Vemparala et al.,
2021, Ye et al., 2019, Sehwag et al., 2020]. Unfortunately, Vemparala et al. [2021] does not have a
public repository for code, Ye et al. [2019] does not have any experiment on standard BasicBlock
ResNets for comparative investigation despite their popularity [Blalock et al., 2020], and Sehwag
et al. [2020] is mostly proposed as an unstructured method with only one structurally pruned ablation
study conducted on VGG-16, yet the structured pruning implementation is not published.

The lack of traffic, infrastructure, or baseline in this area has undoubtedly created deterrents to all
interested scholars. To fill the gap, we provide the community an open-sourced toolkit capable of
testing various victim models against different adversarial attacks under a pruning context,
and it comes with 10+ popular structured pruning methods already integrated for comparative
evaluation.

Grouped Kernel Pruning. Our work relies on the GKP framework — particularly inspired by the
recent work Zhong et al. [2022]. The core of GKP is grouped kernel pruning and reconstruction to a
grouped convolution format, where this combination has been explored a few times under the context
of structure pruning.

Specifically, Zhong et al. [2022] proposed their take on grouped kernel pruning with a three-stage
procedure: filter clustering, generate then decide which grouped kernel pruning strategy to employ,
then reconstruct to grouped convolution format via permutation. This particular framework solved the
previous drawback of requiring a complex procedure, yet a rich set of experiment results were show-
cased to demonstrate its performance advantages against many SOTA structured pruning methods.
Our proposed method is largely enabled by the extra pruning freedom that GKP provides. Outside
of Zhong et al. [2022], concurrent work like Zhang et al. [2022] and follow-up work like Park et al.
[2023] have showcased the excellent benign performance of different GKP implementations.

3 Proposed Method

3.1 Motivation: Pruning May Amplify Overfitting to High-Frequency Components

Wang et al. [2020] suggests CNNs are prone to overfitting high-frequency components (HFC) of
inputs — a type of feature that is not robust yet can be easily replicated with adversarial perturbations.
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Table 1: Unpruned and channel-wise pruned ResNet-56 v. HFC/LFC-reconstructed CIFAR-10 test
set. θ represents the cutoff threshold (for 0 ≤ θ ≤ 1). With a higher θ, the HFC-reconstructed images
will exclusively include more high-frequency information; vice-versa for a lower θ.

INPUT UNPRUNED BASELINE CC PRUNED NPPM PRUNED L1NORM-B PRUNED

FULL (θ = 0.0) 93.24 94.04 93.55 92.62
HFC (θ = 0.3) 77.05 80.22 78.08 79.83
HFC (θ = 0.5) 50.77 57.49 55.47 56.06
HFC (θ = 0.7) 22.79 25.78 21.92 27.15

Though Wang’s finding is towards an unpruned model, such phenomenon can be found, and in fact,
even amplified, under a structural pruning setting.

Benign

Reconstructed 
with LFC

Reconstructed 
with HFC

Input

Unpruned 
Model

Pruned 
Model

Output

Figure 2: A frog figure from
CIFAR-10 test set in its original,
LFC, and HFC-reconstructed for-
mats. The output indicates the
correctness of classification results
when test through of an unpruned
and an L1Norm pruned ResNet-56.

A classic demonstration of such phenomena can be seen in
Figure 2. Despite the frog-labeled figure reconstructed with
only low-frequency components showing visible resemblance
to its original benign format, a ResNet-56 model pruned by
L1Norm filter pruning cannot classify it correctly. However,
such pruned models can somehow correctly classify the same
input reconstructed with only HFCs, even if it already lost
all semantics of a frog to a human audience. This indicates a
model pruned by methods without having adversarial robust-
ness in consideration is more likely to overfit to HFC.

We emphasize that the above example is not a cherry-picked
one. As shown in Table 1, by reconstructing the entire test
set of CIFAR-10 with solely their high-frequency components,
we find that a structurally pruned model is even more prone to
fitting HFCs than its unpruned counterpart. This is potential
because HFCs are easily learnable features under a benign
setting, so pruned models want to “make most use” of their
remaining weights given the reduced network capacity, and
therefore become even more overfitted to HFCs by treating
them as short-cut features.

Kernel smoothness as an indicator for learning from HFC.
Fortunately, Wang et al. [2020] suggests kernel smoothness is
highly correlated to the learning of HFC. Specifically, Wang
et al. [2020] founds that a CNN with “smoother” kernels —
where neighbor weights within a 2D kernel has less of a value
difference — will reduce the overfitting of HFCs, thus making
the model more robust against adversarial perturbations. For
the ease of the following conversation, we define the kernel
smoothness of a convolution kernel k for k ∈ RH×W to be:

smoothness(k) =
h×w∑
i=1

∑
j∈values

border with ki

∣∣k2j − k2i
∣∣, (1)

where H and W are the kernel dimensions; in most CNNs, it is 3× 3.

The finding of kernel smoothness and adversarial robustness presents a unique opportunity under
the context of the GKP framework. Since prior to GKP, densely structured pruning is almost always
done at a filter/channel level, where kernel-level metrics/operation have a little bearing when relaxed.
However, GKP prunes at a (close) kernel level, where a kernel-level metric may still retain its power.

3.2 Mixing Smoothness into Grouped Kernel Pruning Procedure

It is natural to want to encapsulate some kernel-level operations/metrics — in this case, kernel
smoothness — into the procedure of GKP. However, the challenge comes with how we can do it in an
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efficient and effective manner. Particularly, how can we archive improved adversarial performance
without sacrificing benign tasks?

For the ease of illustration, let W ℓ ∈ RCℓ
out×Cℓ

in×Hℓ×W ℓ

be the weight of ℓ-th convolutional layer,
which consist of Cℓ

out filters, with each filter consists of Cℓ
in number of Hℓ×W ℓ 2D kernels. According

to Zhong et al. [2022], a standard GKP procedure has two potential stages:

Stage 1: Filter grouping stage: where the Cℓ
out filters are clustered into n equal-sized filter groups

{FGℓ
i ,FGℓ

j , . . . ,FGℓ
n}, with each filter group FGℓ ∈ RCℓ

out/n×Cℓ
in×Hℓ×W ℓ

.

Stage 2: Pruning strategies obtaining/pruning stage: where the pruning method generates a set
of “candidate” grouped kernel pruning strategies to be evaluated and select from; where a
grouped kernel is defined as a GK ∈ FGℓ with GK having a shape of Cℓ

out/n×1×Hℓ×
W ℓ. Finally, we evaluate all collected candidate strategies and decide which to pursue.
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Figure 3: Smoothness Snaking For Filter Grouping (Stage 1)

However, how to apply kernel smoothness-related criteria to such stages is a non-trivial question. Our
empirical results from some proof-of-concept experiments suggest some naive applications either will
not work at all or will only work by significantly sacrificing the performance on benign tasks: e.g., if
we simply replace Stage 2 above by pruning the grouped kernels with greater

∑
k∈GK smooth(k),

we had experienced a huge drop on benign accuracy Appendix C. Therefore, we must drive our
attention to discover some more sophisticated way of mixing up such criteria into the above stages.

3.2.1 Smoothness Snaking: Is Filter Clustering the Only Right Answer for GKP?

Per TMI-GKP [Zhong et al., 2022], filters within the same convolutional layer are grouped into
several equal-sized groups by a filter clustering schema, which consist of some different combinations
of dimensionality reduction and clustering techniques. The motivation of grouping by clustering
is natural as it establishes a preferable search space for pruning algorithms, where the power of
pruned components can likely be retrained via similar unpruned components within the same group.
However, later procedures of TMI-GKP (e.g., Stage 2 and 3 per Section 3.2) then seek to maintain a
diverse representation of kept components within each filter group, which beg the question: is filter
clustering the only right answer for GKP? If finding a diverse set of unpruned grouped kernels
is the goal, why not have filter groups with filter diversity to start with? And if the answer is
“No.” How can we utilize this opportunity to mix up with kernel smoothness criteria?

Grouped-based pruning will always seek out some kind of balance between groups to avoid skewed
distribution [Zhong et al., 2022]. Following such principle, we want our filter groups to have balanced
smoothness — so that we do not end up having any filter group that is “over” or “under-smoothed” to
start with for pruning. However, this is equivalent to the partition problem, which is known to be
NP-hard. Given the filter grouping stage is often robust to adjustments1, we proposed to sort filters
according to their smoothness, then assign them iteratively in an S-shaped “snaking” manner across a

1In Zhong et al. [2022], various filter grouping strategies — including random assignment — were proposed,
yet many of them tend to perform reasonably well.
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predefined number of filter groups, as shown in Figure 3, namely Smoothness Snaking. Empirical
results suggest although smoothness snaking may not as optimal as the dynamic clustering scheme in
Zhong et al. [2022] in terms of benign performance, it is able to provide better adversarial robustness
under adversarial attacks and is faster to execute due to the absence of dimensionality reduction &
clustering procedures (Appendix C). We consider this to be a successful mix-up.

3.2.2 Smooth Beam Greedy GKP Search
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Figure 4: Smoothness-aware Beam Greedy Search for Grouped Kernel Pruning (Stage 2).
Known that the pruning strategies obtaining/decision stage (Stage 2 per Section 3.2) of GKP is
sensitive to temper, where a direct application of smoothness criteria won’t work Appendix C. This
indicates the distance-based cost formula (Equation 5) proposed in Zhong et al. [2022] carries a
significant influence on the performance of a pruned network, which is non-surprising given the
vast popularity of distance-based pruning arts. Since we can’t directly replace this cost formula,
we propose to widen the capacity of pruning strategies obtaining stage with smoothness in mind
while keeping the decision stage akin to the cost formula. By doing this, the chances of more
“smoothness-aware” pruning strategies being employed are increased.

Again, to keep our approach simple, we implemented a custom beam search element to consider
more grouped kernels during each advancement (Figure 4). Per each iteration, all gathered candidate
grouped kernel pruning strategies will be evaluated against a mixture of smoothness and cost criteria,
where only a Beamwidth amount of grouped kernels will be kept for further advancement (until the
desired pruning ratio is reached). The scoring formula to determine which subset of strategies may
be kept in the beam is defined as:

Score
mix-up

(GKbranch, α) = α · ϕ
(
Cost(GKbranch)

)
+ (1− α) · ϕ

(
Smoothness(GKbranch)

)
, (2)

where ϕ
(
Criterion(GKbranch)

)
represents the rank of such GKbranch when all collected

GKbranch candidates are sorted according to the given Criterion in a descending order. So
ϕ
(
Smoothness(GKbranch)

)
= 0 would suggest this particular GKbranch has a greater smoothness

value (a.k.a. “less smooth”) then all other GKbranch candidates in considerations. α is a tunable
parameter that adjusts the importance of one metric over the other. The Smoothness(GKbranch)
equation is simply the sum of all kernels within all GKkept over Equation 1; yet the Cost(GKbranch)
equation is a modified version of (Equation 5) in Zhong et al. [2022], where we removed some hyper-
parameters for simplicity and to reduce tuning workload. Please refer to Figure 4 and Appendix C
and for more details.

4 Experiments and Results

4.1 Experiment Setups

We evaluate the efficacy of our method on ResNet-32/56/110 with the BasicBlock implementation,
ResNet-50/101 with the BottleNeck implementation, and VGG-16 [He et al., 2016, Simonyan and
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Zisserman, 2015]. For datasets, we choose CIFAR-10 [Krizhevsky, 2009], Tiny-ImageNet [Wu et al.,
2017], and ImageNet-1k [Deng et al., 2009] for a wide range of coverage. For all compared methods
and under most model-dataset combinations, we tried our best to replicate them with a ≈ 300 epochs
(except for ImageNet, where we only employ 100 epochs) of fine-tuning/retraining budget while
maintaining all other settings either identical or proportional to their original publications.

4.2 Compared Methods and Evaluating Criteria

We evaluate our proposed method against up to 13 popular densely structured pruning methods and
variants shown in Appendix D.3. We produce pruned-and-finetuned (or retrained) models upon
identical unpruned baseline models with similar post-prune MACs and Params. Then, we compare
their inference accuracy for benign inputs as well as adversarially-perturbed inputs powered by FGSM
and PGD-perturbed in various perturbation budgets and intensities.

One reporting mechanism that is probably unique to our paper — in comparison to standard pruning
art under the benign space — is for some of our methods, results of multiple epochs are reported,
each showcasing a method’s peak performance against different accuracy metrics. This is because for
benign tasks, following He et al. [2019], only the epoch with the best benign accuracy needs to be
reported. But under an adversarial context, if a pruning method is capable of producing more than
one fully pruned model during the fine-tuning/retraining stage, often time the best performer per each
evaluation metric does not overlap. We believe it is responsible for reporting them all as there are
no dominate evaluation metrics in our experiments; yet this is an important advantage for methods
that can generate multiple usable pruned models (e.g., one-shot pruning) over methods that can only
generate a few or just one fully pruned model (e.g., layer-wise iterative pruning).

We also investigate each pruning method against a checklist of questions, including pruning gran-
ularity, procedure, when is the first fully pruned epoch, zero-masked or hard-pruning, and many
other important questions. This, along with the epoch budget constraint and baseline control, should
provide our audience with a more leveled playing field for informed methods comparison.
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Figure 5: Visualization of ResNet-56 on CIFAR-10 — note this plot is done in a “superscore” manner
for a concise presentation; the four bars of a method may not belong to the same model checkpoint.
4.3 Results and Analysis

Table 2 and Table 3 showcased the performance of various modern SOTA methods as well as our
proposed methods on the two most popular model-dataset combinations [Blalock et al., 2020]. For
ResNet-56 on CIFAR-10, our method outperformed every other method on all evaluating criteria,
except for PGD; as RAP-ADMM outperformed SR-GKP significantly with 61.16% v.s. 44.85%.
However, it is worth noting that RAP-ADMM does adversarial training on PGD-perturbed data, so it
is not surprising that it performs well against the seen type of attack. Unfortunately, it seems like the
adversarially trained RAP-ADMM cannot generalize its defense to other adversarial attacks, even
though they are similar in nature. Also, RAP-ADMM has the worst benign performance across all
showcased methods, yet its training time is significantly longer due to the need to perturb its training
data on-the-fly constantly.

Table 2 (and similar experiments showcased in ) may also answer one of our research questions:
are carefully designed modern structured pruning methods also fragile under adversarial attacks?
The answer is an unfortunate “Yes,” as not only do recent structured pruning methods show serious
performance drops under adversarial attacks, such drops are often more severe than their predecessors

8



Table 2: ResNet-56 on CIFAR-10. All pruning are performed on the same baseline model. “Best (a)”
represents the performance of a model checkpoint that meats

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 42.58 126.561 0.853

CC [Li et al., 2021]
Best Benign 94.04 74.78 29.25 37.85

69.837 0.616Best (a) 93.73 75.75 29.26 38.86
Best (b) 93.70 75.56 29.89 38.90

FPGM [He et al., 2019]
Best Benign 93.60 75.31 43.20 43.55

71.661 0.482Best (a) 93.37 76.28 44.96 44.66Best (b)

HRank [Lin et al., 2020]
Best Benign 92.27 72.32 19.11 32.51 79.237 0.584Best (b)
Best (a) 92.07 72.59 18.94 32.21

L1Norm-B [Li et al., 2016]
Best Benign 92.62 72.97 41.30 41.79

72.115 0.586Best (a) 91.94 75.16 42.49 43.71
Best (b) 91.70 74.40 45.16 43.41

LRF [Joo et al., 2021]
Best Benign 93.93 73.47 25.59 34.86

71.009 0.490Best (a) 93.68 74.80 27.39 36.78
Best (b) 93.63 74.06 28.20 35.98

NPPM [Gao et al., 2021]
Best Benign 93.55 74.82 29.07 37.12

70.843 0.601Best (a) 93.35 75.50 30.29 38.09
Best (b) 93.43 75.27 31.18 38.13

RAP-ADMM[Ye et al., 2019] - 78.37 75.19 27.84 61.15 71.661 0.482

SFP[He et al., 2018] - 93.15 75.63 43.83 44.10 71.462 0.481

TMI-GKP [Zhong et al., 2022]
Best Benign 93.95 75.18 42.18 43.46

71.855 0.482Best (a) 93.37 75.88 42.55 43.74
Best (b) 93.66 75.74 44.09 44.51

SR-GKP (Ours)
Best Benign 94.08 75.89 42.60 43.85

71.855 0.482Best (a) 93.83 76.40 45.17 44.85Best (b)

Table 3: ResNet-50 on ImageNet-1k. Note this table includes two baselines: “self-trained” and
“torchvision”. This is because TMI-GKP requires training epoch snapshots, which is not supplied
with the torchvision pretrained ResNet-50.

Method Baseline Benign FGSMε=0.001 FGSMε=0.01 FGSMε=0.1 PGDε=4/255, εstep=1/255
max_iter=3 MACs (M) Params (M)

Unpruned Self-trained 75.70 67.57 25.82 16.16 6.66 4122.828 25.557

TMI-GKP [Zhong et al., 2022] Self-trained 75.02 67.62 25.86 15.82 7.26 2725.954 17.069
SR-GKP 75.29 68.02 26.45 15.83 8.08 2725.954 17.069

Unpruned torchvision 76.13 70.18 28.70 13.93 9.27 4122.828 25.557

FPGM [He et al., 2019]
torchvision

75.04 68.50 25.84 13.06 7.43 2641.670 18.310
SFP [He et al., 2018] 58.50 55.72 25.82 9.01 11.00 2635.129 17.302
SR-GKP (Ours) 75.34 68.04 26.65 15.94 7.85 2759.672 17.803

— which often rely on much naive design. Figure 5 provides a vivid illustration with LRF — a 2021
method — showing the weakest adversarially robustness across the plotted methods.

Upon careful comparison, we noticed that SFP and FPGM — two pre-2020 methods — tend to be
the best filter pruning methods under the double scrutiny of benign and adversarial tasks. However,
this only holds true to smaller scale experiments, as SFP is significantly outperformed by SR-GKP
on ResNet-50 on ImageNet (58.50% v.s. 74.34%). Though FPGM tends to perform better on the
same task, it is still behind SR-GKP in a general sense.

Last, although TMI-GKP is optimized for benign tasks, and its procedure makes no consideration for
adversarial tasks, it naturally comes with strong adversarial robustness. We believe this has a lot to
do with the increased pruning freedom enabled by the GKP granularity, which further illustrates the
potential of GKP-based methods outside its achievements in benign space. Due to page limitation,
we hereby only showcase an abbreviated version of the experiments. We strongly encourage our
readers to check out our full experiments at Appendix D.3 with a lot more comprehensive
coverage on many more dataset-model combinations.
5 Conclusion
Our work studies the area of adversarially robust structured pruning: a topic presents with severe
problems, but lacks proper recognition or explorations. On the investigation side, we reveal that
— just like their naive predecessors — carefully-designed modern structured pruning methods are
also fragile under adversarial attacks, yet different pruning methods may yield drastically different
adversarial performance, while hiding behind similar benign reports. On the solution side, we
propose SR-GKP: a simple one-shot GKP method showcases competitive benign performance with a
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significant advantage under adversarial attacks against comparable SOTA methods, while requiring
no extra cost from a pruning procedure perspective.

We believe the overlooked nature of this field is mainly two-fold: the lack of pruning freedom
to utilize findings of other fields, and the lack of tools for doing adversarial evaluations under a
pruning context. We present our take and contribution to both issues by showcasing the capability of
GKP-based methods and provide our community an open-sourced tool for future studies.
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A Few Corrections to the Main Paper. We have found some typos and editing errors in our main
paper after our submission, and we would like to utilize the appendix to highlight a couple of them to
resolve any confusion they may have caused:

• On Page 6, Section 3.2.1, Line 230. It should be “However, later procedures of TMI-GKP
(e.g., Stage 2 and 3 per Section 3.2)...”, as there is no Stage 3 in Section 3.2.

• On Page 7, the caption of Table 2 is incomplete. It should read “ResNet-56 on CIFAR-10. All
pruning are performed on the same baseline model. “Best (a)” represents the performance
of a model checkpoint that meats the showcased MACs/Params reduction that perform best
against criterion (a).”

• On Page 9, Section 4.3, Line 314, the Figure anchor is not rendered correctly. It should refer
to Figure 5.

• On Page 9, Table 3. The four accuracy reports of SR-GKP with the “self-trained” baseline
should be embolden, as it is strictly better than TMI-GKP across all evaluating criteria.

Hope those edits help, we apologize the inconvenience they may have caused.

A Limitation and Broader Impact

Though our work mainly focuses on the benign and adversarial performances of densely structured
pruning methods, we expect grouped kernel pruning to provide impressive performance under other
reasonable evaluating metrics — as it simply comes with a higher degree of pruning freedom than
typical filter/channel pruning. We encourage our colleagues to explore more variants of GKP for
different compression tasks.

Note though our investigation revealed serious performance issues under adversarial tasks, they
are still limited to benign and artificially perturbed input. We will leave a more comprehensive
investigation against other robustness metrics for future work.
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B Extended Related Work and Discussion

B.1 Structured v.s. Unstructured Pruning

Pruning methods can be roughly divided into structured pruning and unstructured pruning according
to the pruning granularity. Specifically, unstructured pruning often means we prune each weight
independently. In contrast, structured pruning bundles weights into groups, then prunes the whole
group instead of the individual weight (e.g., block-wise Lagunas et al. [2021], channel-wise He et al.
[2017], group-wise pruning Zhong et al. [2022]).

Unstructured pruning can maintain the model performance better with the same number of parameters.
However, unstructured pruned models yield marginal wall-clock time efficiency, or even slower than
the unpruned model at the low sparsity regime. This is because unstructured pruned matrices need to
be stored in sparse matrix format, as the zeros are randomly distributed in these matrices Yang et al.
[2018]. Operations executed on sparse matrices (e.g., sparse matrix multiplication, sparse embedding
table look-up) are notoriously inefficient on commodity hardware, e.g., GPUs and CPUs, due to the
limited data reuse and random memory access Yang et al. [2018], Han et al. [2016].

In contrast, although structured pruning has less flexibility compared to the unstructured one, it is
much more hardware/library-friendly since structurally pruned matrices can still be stored in the dense
matrix format. Thus, operations executed on structured pruned matrices are the same to those in the
unpruned model, which are highly optimized. Consequently, the compression provided by structured
pruning can often translate into the real wall-clock time speedup upon proper implementations.

B.2 Learning of High-Frequency Components and its Adversarial Implications

As we consult adversarial-robustness-boosting kernel metrics and operations, we heavily rely on
the findings from Wang et al. [2020], a work that discusses how learning components with different
frequencies may affect the adversarial robustness of a CNN, and how may some kernel-level metrics
like kernel smoothness influence such type of learning. We will elaborate more on this in Section ??
above.

C Additional Details on Proposed Method

C.1 Naive Mix-Up Attempts of Kernel Smoothness

As per Section 3.2, there are generally two stages in a GKP procedure: Filter Grouping and Grouped
Kernel Pruning. The following experiments shall attempt to mix-up kernel smoothness criteria into
each of such stages, and we can therefore find out which stage is “friendly” to such mix-up operations
and how such operations should look like.

C.1.1 During GKP Filter Grouping (Stage 1)

In TMI-GKP [Zhong et al., 2022], the filter grouping stage is driven by the tickets magnitude increase
score, known as TMI-driven Clustering. We utilize it as a baseline to investigate whether our
smoothness-aware filter grouping operation — Smoothness Snaking (Section 3.2.1 and Figure 3) —
can maintain the baseline performance and provide improvements. Note, we denote TMI-GKP’s
grouped kernel pruning scheme (GK Pruning) as Greedy in the following Table 4.
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Table 4: Comparison of different Filter Grouping methods in GKP. All compared models are pruned
to identical MACs/Params for fairness.

Model Filter Grouping GK Pruning Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1

ResNet-32

Unpruned - 92.80 71.93 31.35

TMI-driven Clustering Greedy
Best Benign 92.99 69.15 19.59

Best (a) 92.03 70.61 15.85
Best (b) 92.77 69.90 30.51

Smoothness Snaking Greedy
Best Benign 92.77 71.47 30.64Best (a)

Best (b) 92.65 70.82 30.65

ResNet-56

Unpruned - 93.24 75.15 39.64

TMI-driven Clustering Greedy
Best Benign 93.95 75.18 42.18

Best (a) 93.37 75.88 42.55
Best (b) 93.66 75.74 44.09

Smoothness Snaking Greedy
Best Benign 93.62 75.68 41.21

Best (a) 93.40 76.05 43.03
Best (b) 93.44 75.69 44.62

It can be observed that though Smoothness Snaking may yield a slightly lower benign performance
than its TMI-driven baseline, it may improve the adversarial robustness when used with the same
grouped kernel pruning procedure. We would also note Smoothness Snaking is significantly faster (up
to 1,600x) than TMI-driven clustering due to the absence of dimensionality reduction and clustering
procedure (see Table 7 for details).

C.1.2 During GKP Pruning Strategies Obtaining/Pruning (Stage 2)

Following the section above, here we investigate the performance of different Grouped Kernel
Pruning methods. Our proposed method is denoted as Smooth Beam Greedy (see Figure 4 for details),
TMI-GKP’s grouped kernel pruning method is denoted as Greedy as above, and Lease Smooth
represent a vanilla adaptation of smoothness-driven pruning, where the grouped kernels that are least
smooth are pruned.

Table 5: Comparison of different Grouped Kernel Pruning methods in GKP. All compared models
are pruned to identical MACs/Params for fairness.

Model Filter Grouping GK Pruning Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1

ResNet-32

Unpruned - 92.80 71.93 31.35

Smoothness Snaking Greedy
Best Benign 92.77 71.47 30.64Best (a)

Best (b) 92.65 70.82 30.65

Smoothness Snaking Least Smooth
Best Benign 90.09 63.91 17.22

Best (a) 88.90 70.41 15.33
Best (b) 48.37 47.80 28.55

Smoothness Snaking Smooth Beam Greedy
Best Benign 93.02 70.80 30.04

Best (a) 91.94 71.48 15.49
Best (b) 92.73 70.82 31.11

ResNet-56

Unpruned - 93.24 75.15 39.64

Smoothness Snaking Greedy
Best Benign 93.62 75.68 41.21

Best (a) 93.40 76.05 43.03
Best (b) 93.44 75.69 44.62

Smoothness Snaking Least Greedy
Best Benign 90.97 73.32 24.95

Best (a) 90.01 74.63 14.10
Best (b) 90.59 73.60 26.40

Smoothness Snaking Smooth Beam Greedy
Best Benign 94.08 75.89 42.60

Best (a) 93.83 76.40 45.17Best (b)

From Table 5, we may tell that Smooth Beam Greedy may significantly improve the adversarial
robustness of the pruned networks, yet, it also provides remedies to the decrease in benign performance
due to the smoothness snaking operation. It may also be worth noting that the Least Smooth operation
is extremely detrimental to almost all tracking metrics, suggesting a vanilla mix-up is not appropriate.
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C.1.3 Bonus Investigation: Is Smoothness-aware Filter Pruning Possible?

One main purpose of our paper is to endorse the potential of GKP under adversarial tasks, after
[Zhong et al., 2022, Zhang et al., 2022, Park et al., 2023] showcased the power of GKP in a benign
context, thus “one less reason for filter pruning.” But to make such a claim proper, we will need
to investigate whether it is possible to do the same smoothness-aware mix-up with a filter pruning
procedure.

Here in Table 6, we use SFP [He et al., 2018] as the baseline, which is considered one of the strongest
filter pruning methods on CIFAR-10 [Krizhevsky, 2009]. Then, we try to apply the same ranked-
based kernel-smoothness mix-up algorithm as in Equation 2 to find out if such a strong filter pruning
baseline can withstand the same mix-up under a filter level.

Table 6: Filter pruning method SFP [He et al., 2018] applied with the same mix-up algorithm in
Equation 2. Note “CSB” represents “cost smoothness balancer”, which is also α in Equation 2 — so
a higher CSB means more biased towards the distance-based Cost metrics. All compared models are
pruned to identical MACs/Params for fairness.

Model Method Benign FGSMε=0.01 FGSMε=0.1 PGDε=8/255, εstep=2/255
max_iter=3

ResNet-32
SFP 91.94 69.25 30.34 30.18

CSB = 0.5 83.49 40.86 21.12 24.28
CSB = 0.75 91.03 65.94 22.92 25.40

ResNet-56

SFP 93.15 75.63 43.83 44.10

CSB = 0.5 81.83 60.46 19.59 28.45
CSB = 0.75 92.26 72.11 37.42 36.64
CSB = 0.9 93.09 74.78 40.64 41.41

It can be observed that SFP under such mix-up is completely unusable, which suggests the same
mix-up strategy, though effective on GKP, is not transferable to filter pruning.

C.2 Filter Grouping Speed Comparison: TMI-Driven Clustering v.s. Smoothness Snaking

Table 7: Wall-clock runtime comparsion between SR-GKP (Ours) and TMI-GKP [Zhong et al.,
2022].

Method ResNet-32 Group ResNet-32 Total ResNet-56 Group ResNet-56 Total ResNet-110 Group ResNet-110 Total

TMI-GKP 47m 6s 1h 20m 10s 2h 32m 12s 2h 36m 22s 4h 53m 33s 5h 30m 18s
SR-GKP 3s 11m 36s 5s 20m 43s 11s 1h 10m 16s

In Table 7, we showcased the significant runtime advantage of SR-GKP to TMI-GKP due to the
absence of clustering and dimensionality reduction procedure.

C.3 SR-GKP Procedure

C.3.1 Simplifying the Cost Formula from TMI-GKP

For better readability, we hereby follow the notation of TMI-GKP [Zhong et al., 2022] (Equation 4),
where we assume V ∗ represents a set of kept grouped kernels provided by a pruning strategy, where
gℓ the convolutional layer in question. The quality V ∗, under our design, is deemed by:

Score
grouped kernel pruning

(V ∗, gℓ) =
∑

su,sv∈(V
∗
2 )

w(su, sv)− β
( ∑
si=1∈V ∗

w(pi, si)
)
. (3)

Where w(su, sv) represents the Euclidean distance between grouped kernels su and sv, yet si
represents the kept grouped kernel that has the least w(pi, si) to a pruned grouped kernel pi. Thus,
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the former term of this equation calculates the inner distance sum of grouped kernels within strategy
V ∗, yet the latter term represents the outer distance between a pruned grouped kernel and its closest
kept grouped kernel. Intuitively, we would like the former term to be large, as we would prefer our
ideal V ∗ to have great diversity. Following the same idea, we would like to have the latter term small,
as we want the kept kernels to cover the representation power of a certain pruned kernel. By using a
−β to connect two term, we have V ∗

best = argmax
V ∗

(Score(V ∗, gℓ)) for all V ∗s obtained in Stage 2

(Figure 4).

Though similar, we differ from TMI-GKP [Zhong et al., 2022] (Equation 4) in two spots: first, we set
β =

(
V ∗

2

)
/pnum, where pnum represent the number of pruned grouped kernels in layer gℓ, balancing

the two terms automatically. Secondly, for the latter term of Equation 3, we only match one pruned
kernel pi with one kept kernel si, instead of several of them. We made these modifications for the
main purpose of removing hyperparameters. We kept the grouped kernel strategy selection stage
similar to TMI-GKP, but only expanded its search scope using the Smooth Beam Greedy search
(Figure 4), because prior investigation suggests this stage is sensitive to smoothness-aware mix-up
operations.

D Extended Experiments and Results

D.1 Preliminary

D.1.1 Details of Experiment Setups

For all experiments on VGG-16 and ResNet-32/56/110, we aim to provide all pruning methods an
around 300 epochs fine-tuning/retraining budget. Experiments conducted on ResNet-50/101 are
budgeted with 100 epochs. We allow comparing methods to utilize their own training schedule and
vanilla SGD optimizer setup.

SR-GKP utilizes an initial lr of 0.01, with a step size of 100 or 30, depending on if it is on the
300 epoch or 100 epoch schedule. BasicBlock ResNets with VGG use a weight decay of 5e-4,
yet BottleNeck ResNets use a weight decay of 1e-4. SR-GKP strictly employs a batch size of
64 for all CIFAR-10 experiments, 128 for Tiny-ImageNet experiments, and 256 for ImageNet-1k
experiments.

D.1.2 Details of Evaluation Criteria

We manually ensure all pruned models have a similar MACs/Params reduction from the identical
baseline models. Then, following Li et al. [2017], we report all model checkpoints — yield during the
pruning procedure — that may reach the target MACs/Params reduction. For performance (accuracy)
evaluation, we test each model against FGSM [Goodfellow et al., 2014] and PGD [Madry et al.,
2018] under various settings and intensities.

D.1.3 Details of Compared Methods

We provide a method overview in Table 8 to provide our readers with a more comprehensive
understanding of such methods.
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Table 8: Details of Compared Methods. Note “C/F/GK” under “Type” represents Chan-
nel/Filter/Grouped Kernel Pruning. Whether a method requires “Special Setup” is determined
by whether it follows the most vanilla train-prune-fine-tune procedure. “Fully Pruned Epoch” re-
flects if given a 300 fine-tune/retrain budget, what would be the first epoch that meets the target
MACs/Params reduction? “Zero-Masked?” reflects whether the pruning method can easily yield a
compressed model without masking (a.k.a. hard pruning).

Method Venue Type Procedure Special Setup? Zero-Masked? Fully Pruned Epoch

CC [Li et al., 2021] CVPR C One-shot Y(requires data) N 1
DHP [Li et al., 2020] ECCV F Iterative (from scratch) Y (hypernet) Y 100
FPGM [He et al., 2019] CVPR F Iterative N Y 1
GAL [Lin et al., 2019] CVPR F Iterative Y (GAN) Y close to 300
HRank [Lin et al., 2020] CVPR F Iterative N Y 325 or 327
L1Norm [Li et al., 2016] ICLR F One-shot Y (dynamic pruning rate) N 1
LRF [Joo et al., 2021] AAAI C One-shot Y (requires data, adding 1x1, dark knowledge) N 1
NPPM [Gao et al., 2021] CVPR C One-shot Y (hypernet) N 1
RAP-ADMM [Ye et al., 2019] ICCV F Iterative Y (adv. training) Y 151
SFP [He et al., 2018] IJCAI F Iterative Y (soft pruning) Y 300
TMI-GKP [Zhong et al., 2022] ICLR GK One-shot N N 1
SR-GKP (Ours) - GK One-shot N N 1

D.2 Additional Experiments

D.2.1 ResNet-32/56/110 on CIFAR-10 (in addition to Table 2)

Please refer to Table 9, Table 10, and Table 11 for details.
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Figure 6: “Superscore” visualization of ResNet-32 on CIFAR-10.

20

40

60

80

100

Unpruned CC DHP FPGM GAL HRank L1Norm-A L1Norm-B LRF NPPM RAP-ADMM SFP TMI-GKP SR-GKP (Ours)

44.8544.5144.10

54.22

38.1336.78

43.7142.74

32.51

47.36
44.66

33.64

38.90
42.58

45.1744.0943.8345.35

31.18
28.20

45.16
48.1947.32

44.96

70.42

29.26

39.64

76.4075.8875.63

61.08

75.5074.8075.1674.30
72.59

76.3876.28

70.66

75.7575.15

94.0893.9593.15

61.54

93.5593.9392.6292.4492.2791.27
93.6092.42

94.0493.24

Benign FGSM ε = 0.01 FGSM ε = 0.1 PGD ε = 8/255, ε_step = 2/255, max_iter = 3

Ac
cu

ra
cy

Figure 7: “Superscore” visualization of ResNet-56 on CIFAR-10.
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Figure 8: “Superscore” visualization of ResNet-110 on CIFAR-10.

D.2.2 VGG-16 on CIFAR-10

Please refer to Table 12 for details.

20

40

60

80

100

Unpruned CC GAL HRank L1Norm TMI-GKP SR-GKP (Ours)

66.6266.06

57.0356.50

67.29
62.8564.99

59.03
55.30

41.81

34.76

61.96

48.9750.51

83.8583.4881.5381.5881.6983.3883.73

93.9594.0792.8893.5791.29
94.1493.94

Benign FGSM ε = 0.01 FGSM ε = 0.1 PGD ε = 8/255, ε_step = 2/255, max_iter = 3

Ac
cu

ra
cy

Figure 9: “Superscore” visualization of VGG-16 on CIFAR-10.

D.2.3 ResNet-56/101 on Tiny-ImageNet

Please refer to Table 13.

D.3 Ablation Studies

Please refer to Table 14, Table 15, and Table 16 for ablation studies on hyperparameter α in Equation 2.
We denote it as CSB as it is in essence a “cost-smoothness balancer.” It can be observed that a
relatively high CSB — meaning giving more bias to the distance-based cost metrics — may yield
better performance.
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Table 9: Full experiments of ResNet-32 on CIFAR-10. All pruning are performed on the same baseline
model. “Best (a)” represents the performance of a model checkpoint that meats the showcased
MACs/Params reduction that perform best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 92.80 71.93 31.35 35.40 69.479 0.464

CC [Li et al., 2021]
Best Benign 93.01 70.06 25.26 30.40

39.261 0.312Best (a) 92.69 70.92 25.84 30.75
Best (b) 92.82 70.50 26.79 31.20

DHP [Li et al., 2020]
Best Benign 92.26 67.25 21.35 26.12

40.091 0.283Best (a) 91.88 68.14 26.64 26.80
Best (b) 91.80 67.62 27.23 26.65

FPGM [He et al., 2019]
Best Benign 92.41 69.75 29.61 32.32

39.352 0.262Best (a) 92.06 70.84 29.74 32.57
Best (b) 92.23 69.96 30.99 32.43

GAL [Lin et al., 2019] - 90.31 72.21 31.68 38.32 38.80 0.233

L1Norm-A [Li et al., 2016]
Best Benign 91.45 68.04 24.03 28.71

39.861 0.252Best (a) 91.03 70.00 25.92 30.70
Best (b) 90.38 67.61 32.50 29.67

L1Norm-B [Li et al., 2016]
Best Benign 91.58 67.04 25.24 28.91

39.630 0.313Best (a) 91.03 71.59 29.11 35.20
Best (b) 90.59 69.67 34.62 34.02

LRF [Joo et al., 2021]
Best Benign 93.04 69.38 25.82 30.07

38.791 0.260Best (a) 92.63 70.22 25.13 29.74
Best (b) 92.79 69.21 27.54 28.64

NPPM [Gao et al., 2021]
Best Benign 93.13 69.88 26.03 29.75

39.605 0.326Best (a) 92.88 70.45 27.27 30.41
Best (b) 92.89 70.08 27.97 30.51

RAP-ADMM [Ye et al., 2019] - 74.88 72.27 25.80 57.66 39.370 0.271

SFP [He et al., 2018] - 91.94 69.25 30.34 30.18 40.375 0.266

TMI-GKP [Zhong et al., 2022]
Best Benign 92.99 69.15 19.59 28.09

39.545 0.263Best (a) 92.03 70.61 15.85 29.44
Best (b) 92.77 69.90 30.51 32.05

SR-GKP (Ours)
Best Benign 92.97 70.57 29.31 32.01

39.545 0.263Best (a) 92.88 71.52 30.39 33.36
Best (b) 92.86 70.79 31.32 32.89

Table 10: Full experiments of ResNet-56 on CIFAR-10. All pruning are performed on the same
baseline model. “Best (a)” represents the performance of a model checkpoint that meats the showcased
MACs/Params reduction that perform best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 42.58 126.561 0.853

CC [Li et al., 2021]
Best Benign 94.04 74.78 29.25 37.85

69.837 0.616Best (a) 93.73 75.75 29.26 38.86
Best (b) 93.70 75.56 29.89 38.90

DHP [Li et al., 2020]
Best Benign 92.42 69.50 29.93 32.56

73.289 0.480Best (a) 92.34 70.66 30.17 33.64
Best (b) 92.07 31.54 70.42 32.83

FPGM [He et al., 2019]
Best Benign 93.60 75.31 43.20 43.55

71.661 0.482Best (a) 93.37 76.28 44.96 44.66Best (b)

GAL [Lin et al., 2019] - 91.27 76.38 47.32 47.36 98.24 0.700

HRank [Lin et al., 2020]
Best Benign 92.27 72.32 19.11 32.51 79.237 0.584Best (b)
Best (a) 92.07 72.59 18.94 32.21

L1Norm-A [Li et al., 2016]
Best Benign 92.44 73.00 41.00 40.76

67.995 0.487Best (a) 91.65 74.30 43.59 42.74
Best (b) 91.34 71.94 48.19 42.10

L1Norm-B [Li et al., 2016]
Best Benign 92.62 72.97 41.30 41.79

72.115 0.586Best (a) 91.94 75.16 42.49 43.71
Best (b) 91.70 74.40 45.16 43.41

LRF [Joo et al., 2021]
Best Benign 93.93 73.47 25.59 34.86

71.009 0.490Best (a) 93.68 74.80 27.39 36.78
Best (b) 93.63 74.06 28.20 35.98

NPPM [Gao et al., 2021]
Best Benign 93.55 74.82 29.07 37.12

70.843 0.601Best (a) 93.35 75.50 30.29 38.09
Best (b) 93.43 75.27 31.18 38.13

RAP-ADMM [Ye et al., 2019] - 78.37 75.19 27.84 61.15 71.661 0.482

SFP [He et al., 2018] - 93.15 75.63 43.83 44.10 71.462 0.481

TMI-GKP [Zhong et al., 2022]
Best Benign 93.95 75.18 42.18 43.46

71.855 0.482Best (a) 93.37 75.88 42.55 43.74
Best (b) 93.66 75.74 44.09 44.51

SR-GKP (Ours)
Best Benign 94.08 75.89 42.60 43.85

71.855 0.482Best (a) 93.83 76.40 45.17 44.85Best (b)
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Table 11: Full experiments of ResNet-110 on CIFAR-10. All pruning are performed on the same
baseline model. “Best (a)” represents the performance of a model checkpoint that meats the showcased
MACs/Params reduction that perform best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 94.26 78.56 48.83 50.85 254.995 1.728

CC [Li et al., 2021]
Best Benign 94.31 75.12 27.31 38.24

144.414 1.046Best (a) 94.17 75.88 28.14 39.78
Best (b) 94.23 75.52 29.00 39.64

DHP [Li et al., 2020]
Best Benign 92.53 67.94 25.08 26.83

101.350 0.612Best (a) 92.21 68.86 25,51 27.19
Best (b) 92.25 67.82 26.64 26.67

FPGM [He et al., 2019]
Best Benign 94.18 79.32 52.16 52.46

114.357 0.976Best (a) 94.02 79.78 53.33 52.73
Best (b) 94.10 79.70 54.15 52.82

GAL [Lin et al., 2019] - 93.42 82.34 52.79 57.55 180.677 1.186

HRank [Lin et al., 2020] Best Benign 92.96 73.70 16.87 35.72 158.992 1.060

L1Norm-A [Li et al., 2016]
Best Benign 92.75 74.84 38.03 41.54

143.454 0.958Best (a) 91.93 75.83 39.71 44.04
Best (b) 92.21 75.26 45.48 45.49

L1Norm-B [Li et al., 2016]
Best Benign 92.96 75.26 41.19 44.86

144.909 1.094Best (a) 92.40 76.10 41.36 47.05
Best (b) 91.71 73.58 41.92 42.69

LRF [Joo et al., 2021]
Best Benign 94.49 76.60 29.50 42.15

144.405 0.997Best (a) 94.22 76.93 29.27 42.59
Best (b) 94.38 76.71 30.67 42.67

NPPM [Gao et al., 2021]
Best Benign 94.16 76.16 32.84 41.54

146.722 1.120Best (a) 94.01 76.56 33.71 42.14Best (b)

RAP-ADMM [Ye et al., 2019] - 81.43 78.36 29.26 63.11 144.357 0.976

SFP [He et al., 2018] - 94.44 78.75 53.62 52.57 144.274 0.976

TMI-GKP [Zhong et al., 2022]
Best Benign 94.90 77.50 47.15 49.00

144.551 0.976Best (a) 94.63 78.02 45.95 48.81
Best (b) 94.90 77.50 47.15 49.00

SR-GKP (Ours)
Best Benign 95.00 78.01 46.53 48.86

144.551 0.976Best (a) 94.69 79.14 47.49 50.01
Best (b) 94.60 78.92 49.09 49.83

Table 12: Full experiments of VGG-16 on CIFAR-10. All pruning are performed on the same baseline
model. “Best (a)” represents the performance of a model checkpoint that meats the showcased
MACs/Params reduction that perform best against criterion (a).

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.94 83.73 50.51 64.99 313.433 14.728

CC [Li et al., 2021]
Best Benign 94.14 83.09 47.83 62.81

178.107 -Best (a) 93.88 83.38 47.70 62.74
Best (b) 93.97 83.14 48.97 62.85

GAL [Lin et al., 2019] - 91.29 81.69 61.96 67.29 203.224 7.732

HRank [Lin et al., 2020]
Best Benign 93.57 81.45 31.80 56.28

212.264 8.700Best (a) 93.53 81.58 34.00 56.50
Best (b) 93.54 81.52 34.76 56.34

L1Norm [Li et al., 2016]
Best Benign 92.88 80.85 37.21 56.43

179.561 9.135Best (a) 92.41 81.53 31.10 56.17
Best (b) 92.06 80.48 41.81 57.03

TMI-GKP [Zhong et al., 2022] Best Benign 94.07 83.48 55.30 66.06 178.184 8.293

SR-GKP (Ours)
Best Benign 93.95 83.49 56.64 65.57

178.184 8.293Best (a) 93.77 83.85 57.48 66.51
Best (b) 93.86 83.61 59.03 66.62

Table 13: Full experiments of ResNet-56/101 on Tiny-Imagenet. All pruning are performed on the
same baseline model. “Best (a)” represents the performance of a model checkpoint that meats the
showcased MACs/Params reduction that perform best against criterion (a).

Model Method Criterion Benign (a) FGSMε=0.001 (b) FGSMε=0.01 (c)FGSMε=0.1 (d) PGDε=4/255, εstep=1/255
max_iter=3 MACs (M) Params (M)

ResNet-56
Unpruned - 55.59 53.55 28.29 8.00 15.80 506.254 0.865
SR-GKP (Ours) Best Benign 54.83 54.14 29.22 7.71 17.08 318.690 0.547
TMI-GKP [Zhong et al., 2022] Best Benign 51.48 50.07 27.23 7.62 15.42 318.690 0.547

ResNet-101

Unpruned - 65.51 65.12 48.10 10.13 37.66 10081.092 42.902

SR-GKP (Ours)

Best Benign 67.21 66.52 46.98 8.95 37.34

5721.113 24.226Best (a) 65.69 64.91 37.95 10.95 25.94
Best (b) 65.61 64.71 38.27 10.85 25.97
Best (c) 65.69 64.91 37.95 10.96 25.95

ResNet-101 TMI-GKP [Zhong et al., 2022]

Best Benign 64.69 64.03 42.57 8.40 32.52 5721.113 24.226
Best (a) 63.53 62.23 33.47 10.46 20.61 5721.113 24.226
Best (b) 63.60 61.94 33.71 10.71 20.47 5721.113 24.226
Best (c) 63.50 61.93 33.67 10.77 20.63 5721.113 24.226
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Table 14: Ablation study of cost-smoothness balancer “CSB” (α in Equation 2) on ResNet-32 with
CIFAR-10.

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 MACs (M) Params (M)

Unpruned - 92.80 71.93 31.35 69.479 0.464

0.1 CSB
Best Benign 92.79 70.39 28.09

39.545 0.263Best (a) 92.59 71.50 29.03
Best (b) 92.47 70.94 29.69

0.25 CSB
Best Benign 93.01 70.45 27.91

39.545 0.263Best (a) 92.70 71.32 30.46Best (b)

0.5 CSB
Best Benign 93.07 68.74 28.07

39.545 0.263Best (a) 92.54 70.63 21.42
Best (b) 92.78 70.29 30.47

0.75 CSB
Best Benign 92.93 70.55 30.02

39.545 0.263Best (a) 92.70 71.09 30.89Best (b)

0.9 CSB
Best Benign 92.97 70.57 29.31

39.545 0.263Best (a) 92.88 71.52 30.39
Best (b) 92.86 70.79 31.32

Table 15: Ablation study of cost-smoothness balancer “CSB” (α in Equation 2) on ResNet-56 with
CIFAR-10.

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 126.561 0.853

0.1 CSB
Best Benign 93.72 75.17 39.90

71.855 0.482Best (a) 93.38 75.79 42.53Best (b)

0.25 CSB
Best Benign 93.83 75.68 40.40

71.855 0.482Best (a) 93.70 76.49 42.35
Best (b) 93.57 75.72 43.92

0.5 CSB
Best Benign 93.76 75.61 41.20

71.855 0.482Best (a) 93.41 76.69 42.58
Best (b) 93.45 75.97 42.69

0.75/0.9 CSB
Best Benign 94.08 75.89 42.60

71.855 0.482Best (a) 93.83 76.40 45.17Best (b)
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Table 16: Ablation study of cost-smoothness balancer “CSB” (α in Equation 2) on ResNet-56 with
CIFAR-110.

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 MACs (M) Params (M)

Unpruned - 94.26 78.56 48.83 254.995 1.728

0.1 CSB
Best Benign 94.60 78.44 44.20

144.551 0.976Best (a) 94.47 79.62 46.03
Best (b) 94.35 79.41 47.5

0.25 CSB
Best Benign 94.50 77.86 47.07

144.551 0.976Best (a) 94.35 78.65 46.04
Best (b) 94.40 78.52 48.10

0.5 CSB
Best Benign 95.00 78.01 46.53

144.551 0.976Best (a) 94.69 79.14 47.49
Best (b) 94.60 78.92 49.09

0.75 CSB
Best Benign 94.49 77.97 45.93

144.551 0.976Best (a) 94.26 78.91 47.84
Best (b) 94.32 78.44 48.89

0.9 CSB
Best Benign 94.54 78.21 47.16

144.551 0.976Best (a) 94.29 78.81 46.71
Best (b) 94.31 78.25 48.55
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Table 17: ResNet-32 on CIFAR-10 with pr = 62.5

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 92.80 71.93 31.35 35.40 69.479 0.464

CC [Li et al., 2021]
Best Benign 92.39 70.71 15.45 30.87

26.904 0.210Best (a) 91.83 69.99 28.84 30.91
Best (b) 92.01 67.97 29.07 29.29

DHP [Li et al., 2020]
Best Benign 91.73 66.87 28.00 26.71

- -Best (a) 91.36 67.71 26.83 26.89
Best (b) 91.31 66.84 28.75 26.39

FPGM [He et al., 2019]
Best Benign 91.32 65.41 20.91 24.97

- -Best (a) 90.47 67.77 15.95 26.61
Best (b) 91.04 56.51 24.47 25.68

L1Norm-A [Li et al., 2016]
Best Benign 89.96 66.06 20.44 27.29

26.511 0.163Best (a) 89.52 67.65 18.07 27.93
Best (b) 89.23 66.75 23.21 27.88

L1Norm-B [Li et al., 2016]
Best Benign 90.01 64.89 19.39 24.52

26.157 0.146Best (a) 89.78 67.14 17.75 26.91
Best (b) 89.42 66.66 21.63 27.55

LRF [Joo et al., 2021]
Best Benign 92.79 68.97 22.02 27.95

29.915 0.196Best (a) 92.46 70.56 20.91 28.90
Best (b) 92.43 69.50 25.40 29.22

NPPM [Gao et al., 2021]
Best Benign 91.92 66.83 22.23 25.63

26.998 0.198Best (a) 91.79 67.56 22.39 25.91
Best (b) 91.67 67.16 23.97 25.60

OTOv2 (from scratch) [Chen et al., 2023] - 90.97 66.36 17.28 27.15 - -

OTOv2 (post train) [Chen et al., 2023] - 92.14 70.63 28.01 31.96 - -

SFP [He et al., 2018] - 90.28 66.71 20.35 25.47 - -

SR-GKP (Ours)
Best Benign 92.21 66.38 21.91 25.98

26.717 0.176Best (a) 91.52 69.33 14.83 27.94
Best (b) 92.04 66.37 23.55 25.80

Table 18: ResNet-56 on CIFAR-10 with pr = 62.5

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 93.24 75.15 39.64 42.58 126.561 0.853

CC [Li et al., 2021]
Best Benign 93.57 73.63 25.30 35.40

48.692 0.421Best (a) 93.33 74.29 24.96 35.54
Best (b) 93.37 62.56 26.12 35.25

DHP [Li et al., 2020]
Best Benign 91.66 70.66 29.75 31.40

- -Best (a) 91.36 71.22 26.36 31.05
Best (b) 91.48 70.41 30.15 31.27

FPGM [He et al., 2019]
Best Benign 92.64 71.80 35.17 35.17

- -Best (a) 92.31 72.58 35.98 35.94
Best (b) 92.62 71.86 35.99 35.61

HRank [Lin et al., 2020] - 90.63 69.49 17.14 29.51 - -

L1Norm-A [Li et al., 2016]
Best Benign 91.79 68.95 24.68 34.90

47.562 0.355Best (a) 91.12 71.76 37.01 36.97
Best (b) 91.47 70.10 39.83 37.03

L1Norm-B [Li et al., 2016]
Best Benign 91.56 69.56 32.80 33.61

47.794 0.322Best (a) 90.66 71.24 33.22 35.09
Best (b) 91.07 69.25 26.19 33.66

NPPM [Gao et al., 2021]
Best Benign 93.07 73.23 29.66 35.24

52.550 0.446Best (a) 92.84 74.21 28.27 35.38
Best (b) 93.02 72.91 30.39 34.03

OTOv2 (from scratch) [Chen et al., 2023] - 91.41 67.83 22.02 29.78 78.361 0.488

OTOv2 (post train) [Chen et al., 2023] - 93.19 75.11 41.46 42.63 65.072 0.555

SFP [He et al., 2018] - 92.24 72.21 33.65 35.39 - -

SR-GKP (Ours)
Best Benign 92.93 70.94 21.15 32.01

48.409 0.323Best (a) 92.69 73.54 35.42 38.39
Best (b) 92.69 73.38 36.53 38.95
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Table 19: ResNet-110 on CIFAR-10 with pr = 62.5

Method Criterion Benign (a) FGSMε=0.01 (b) FGSMε=0.1 (c) PGDε=8/255, εstep=2/255
max_iter=3 MACs (M) Params (M)

Unpruned - 94.26 78.55 48.84 50.85 254.995 1.728

CC [Li et al., 2021]
Best Benign 94.29 73.77 24.50 36.32

98.582 0.727Best (a) 94.05 74.23 24.87 36.71
Best (b) 94.03 73.70 26.03 36.44

DHP [Li et al., 2020]
Best Benign 92.73 71.39 23.19 35.51

- -Best (a) 92.35 72.41 23.70 36.22
Best (b) 92.50 71.27 25.13 34.86

FPGM [He et al., 2019]
Best Benign 94.11 76.11 47.62 47.54

- -Best (a) 94.00 76.52 48.39 47.75
Best (b) 93.93 76.41 49.33 47.62

HRank [Lin et al., 2020] - 91.94 70.13 15.04 30.19 - -

L1Norm-A [Li et al., 2016] Best Benign 92.50 73.06 40.19 41.77 97.952 0.622Best (a) & (b) 91.51 74.99 42.62 43.45

L1Norm-B [Li et al., 2016]
Best Benign 94.04 74.81 41.82 41.28

101.256 0.484Best (a) 93.79 75.55 42.36 41.99
Best (b) 93.86 74.96 43.43 41.99

LRF [Joo et al., 2021]
Best Benign 94.10 75.47 20.66 39.87

94.479 0.638Best (a) 93.88 76.96 33.44 42.52
Best (b) 93.98 76.21 34.55 41.77

NPPM [Gao et al., 2021]
Best Benign 93.93 74.71 31.37 38.81

99.915 0.746Best (a) 93.76 75.32 31.12 39.26
Best (b) 93.79 75.02 32.62 39.26

OTOv2 (from scratch) [Chen et al., 2023] - 91.58 71.43 22.02 29.78 78.361 0.488

OTOv2 (post train) [Chen et al., 2023] - 93.19 75.11 41.46 42.63 65.072 0.555

SFP [He et al., 2018] - 92.98 76.08 52.15 47.26 - -

SR-GKP (Ours)
Best Benign 94.31 76.31 43.88 45.44

97.217 0.654Best (a) 94.17 76.52 43.98 46.01
Best (b) 94.27 76.17 44.56 45.74

Table 20: Methods ranked against each other on each model with pruning rate ≈ 62.5.

Method ResNet-32 Mean Rank ResNet-56 Mean Rank ResNet-110 Mean Rank All Models Mean Rank

CC #1 #3.5 #5.75 #3.42
DHP #3.75 #7.5 #7.75 #6.33
FPGM #4.25 #3.75 #2 #3.33
L1Norm-A #5.5 #3.75 #5.75 #5.00
L1Norm-B #6.25 #6.25 #4.25 #5.58
NPPM #5 #4 #5.5 #4.83
SFP #7.5 #5 #3 #5.17
SR-GKP (Ours) #2.75 (2nd-best) #2.25 #2 #2.33
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