
January 28, 2024

The DeepBozo Report

Youwen Wu Ananth Venkatesh

Team 1280 Robotics
EECS | Department of Artificial Intelligence

1



Abstract
DeepBozo is designed to incorporate various AI-enhanced driver assistance features and

autonomous technologies. In order to meet our 1 month deadline for a prototype that’s ready to
scrimmage and train with, Team 1280 EECS needs to conduct a thorough analysis of the goals
and limitations of DeepBozo and its various subroutines. In this report, we explore the various

possible capabilities of DeepBozo and the feasibility of each.

2



1 Introduction
We will conduct a holistic analysis of the feasibility of various DeepBozo features, in order to
operate as a utility-maximizing subteam and utilize our resources at allocative efficiency, while
developing our planned features within the limitations that are imposed upon us.

1.1 Methodology
We will discuss each planned DeepBozo subroutine and classify these planned features on 1 of 4
levels: trivial, feasible, insane, and ludicrous.

• Trivial: this means that the feature should be straightforward to implement with little ad-
vanced knowledge or research required and likely contains a large amount of “grunt work.” This
task can probably be offloaded to rookies without much issue.

• Feasible: this means that the feature is most likely doable with a bit of elbow grease and
some digging around on StackOverflow. Any member of programming can probably complete it
without much issue, but it may require more in-depth codebase knowledge or advanced skillset
that rookies may not be able to meet without some assistance.

• Insane: these features are difficult to implement. It’s not certain whether they can be imple-
mented fully according to their specifications, and they will likely require quite a bit of work,
experimentation, debugging, and reading. These tasks likely require a somewhat advanced pro-
gramming skillset and an in-depth understanding of the codebase and robot. It’s probably not
a good idea to assign these to rookies.

• Ludicrous: these features err on the side of science fiction. It’s not certain whether even a rudi-
mentary proof-of-concept can be created for these features that works well enough for testing,
let alone a production-ready release developed up to the original specifications. It’s probably
best not to attempt too many of these features before completing a few less challenging ones.

Fig. 1: Grunt work (which is common in trivial and some feasible tasks) lays the foundation for
great work. Offloading this to rookies maximizes marginal revenue product, allowing us to operate
at allocative efficiency.

3



1.2 DeepBozo Nomenclature
The DeepBozo autonomous suite’s various subroutines have been classified into a few distinct
groups based on their general specifications, due to its complex nature (see Fig. 3). However,
they are all designed to work in tandem, so the various subroutines may rely on and utilize each
other’s features. The subroutines are defined as follows:

• BozoVision (gavin, “General Autonomous Vision Information Networking”): our computer
vision suite. This mainly encompasses features involving object detection, classification, and
recognition via Limelight, accelerated by the Coral TPU and other hardware at our disposal
(e.g. the ROG Zephyrus). It also includes other sensing capabilities like the LiDAR. This is
currently the most mature subroutine thanks to the extensive work done on the Limelight so
far, but artificial intelligence integration is not fully complete.

• BozoAssist (amit, “Automated Movement In Teleoperated”): our driver assistance capabili-
ties. These features mainly pull data from the other subroutines and synthesize them to make
real-time decisions to assist the operator and avoid catastrophic incidents. BozoAssist may
periodically override teleoperated commands when deemed necessary or when operator perfor-
mance is suboptimal. This subroutine relies on, but does not encompass fsd (see BozoAuto).

• BozoLLM (lmao, “Large-language Model Autonomous Operations”): our large language
model, with potential vision input, running on the driver station laptop to bypass coprocessor
restrictions. This will be the decision-making subroutine which will assist the autonomous mode
and the operator with its intelligent capabilities, when our human-made algorithms fall flat.

• BozoAutonomous (Mk. II) (fsd, “Full Self Driving”): our flagship autonomous mode. It
will utilize a pre-planned path for its initial autonomous routine, but feature automatic decision
making with the capability to drive the robot and complete objectives without any human or
operator input. This subsystem may also be activated during the teleoperated period, especially
recommended when driver performance is suboptimal (as determined by BozoAssist).

Fig. 2: Elon Musk brilliantly states the guiding philosophy of the DeepBozo project, which
is to replace incompetent and error-prone human operators with highly-trained and specialized
intelligent subroutines.

4



2 Diagrams

Fig. 3: DeepBozo internals, visualized

5



3 Planned Features
We currently have various planned subroutines that we need to implement in the next month.
However, we are lacking a concrete plan as to which specific features actually need to be created.
In this section, we will analyze the various submodules that the DeepBozo subroutines each consist
of and their feasibility.

Note: some of these features are already implemented. They are included for posterity.

3.1 BozoVision

Feature Description Feasibility

Rudimentary
Vision

Allow the Limelight to automatically
detect AprilTags and other visual fidu-
cials. This is the baseline level of vision.

Trivial: this is technology
built-in to the Limelight

Object
Recognition

Use the Limelight to classify basic ob-
jects and, more importantly, detect
game pieces and other commonly-en-
countered objects.

Feasible: this is functionality
that the Limelight is designed
to do, but it needs the Coral
TPU.

Occupancy
Network

Use all vision systems to generate an ap-
proximate object depth map. Odometry
should allow the robot to know where
it is on the field, and the LiDAR can
ground depth estimations by calculating
the distance to a specific location on one
of the Limelight images (with a rotating
mount, this can potentially be used to
generate a linear depth map). Ideally, a
visualization would also be incorporated
in the Jankboard. To expand on the Li-
DAR’s capabilities and realize the full
potential of the Occupancy Network, a
depth model should run on the driver
station laptop in real-time.

Ludicrous: this is functional-
ity we will have to develop al-
most entirely from scratch, in-
corporating Limelight and Li-
DAR information. The depth
model, if running concurrently
with BozoLLM, will face
certain hardware limitations.
Notwithstanding the depth
model, this feature may be
classified as Insane instead.

6



3.2 BozoAssist

Feature Description Feasibility

Aimbot Automatically align the robot to a
specificed target (likely the game
pieces).

Trivial: following April Tags
with BozoVision will allow a
trivial implementation of this
with game targets.

Cruise Control The robot attempts to reach and main-
tain a set speed, adjustable by the op-
erator.

Trivial: simple to implement,
nothing fancy here.

Adaptive
Cruise Control

Includes all the features of regular
Cruise Control, but the robot also dy-
namically adjusts speed smoothly to
avoid forward collision.

Feasible: Once LiDAR is
properly mounted, it should-
n’t be too difficult to add
this functionality onto exist-
ing Cruise Control.

Automatic
Collision
Mitigation

The robot automatically avoids pre-
dicted imminent collisions using the
available sensors, or if implemented, the
BozoVision Occupancy Network.

Feasible/Insane: depending
on the capabilities of the ro-
tating LiDAR, this feature
may be difficult to implement.
Relying solely on vision seems
technically difficult, without
the depth network. If the
scope of this feature was re-
duced to just forward collision
mitigation with a front-fac-
ing LiDAR, it may be instead
classified Trivial/Feasible.

3.3 BozoLLM

Feature Description Feasibility

lmao – LLM
tuned for robot
control

An LLM that is able to provide direc-
tions that can be converted to instruc-
tions that control the robot. Optionally,
this LLM can include image recognition
(using e.g. Llava).

Feasible: the main issue is
figuring out how to integrate
the LLM with the robot con-
trols and telemetry.

7



3.4 BozoAutonomous Mk. II

Feature Description Feasibility

Pre-planned
paths

Planned paths for the autonomous
mode.

Feasible: shouldn’t require
anything fancy, but rookies
cannot be trusted with it due
to its critical strategic impor-
tance.

fsd +
Intelligent
path-planning

Intelligent path planning via DeepBozo
subroutines when the pre-planned path
is disrupted. The robot should be able
to drive itself and automatically avoid
obstacles in its path, using both Bozo-
Vision and BozoLLM output to guide
its path.

Ludicrous: Depends on how
trustworthy we need the fsd
system to be and whether it
can be used in the teleoper-
ated period.

Fig. 4: Just as the now commonplace GPWS system reguarly prevents 9/11 incidents, DeepBo-
zo’s incredible breadth of features will correctly guide human operators even during unexpected
circumstances due to its intelligent decision making capabilities.

8



4 Conclusion
Clearly, the development of DeepBozo will be a task filled with ardor, tumult, and obloquy. We
can see that some DeepBozo features may be somewhat unrealistic. We should add and assign the
various features in each subroutine to people on GitHub, and focus on trivial/feasible features
for now so that we have basic features ready for testing and scrimming.

Pictured above: The ROG Zephyrus (left), a critical hardware upgrade that will allow running
many DeepBozo subroutines. Dean Kamen (right), an FRC hero who also likes to visit Epstein
island.

9


	Team 1280 Robotics
	Introduction
	Methodology
	DeepBozo Nomenclature

	Diagrams
	Planned Features
	BozoVision
	BozoAssist
	BozoLLM
	BozoAutonomous Mk. II

	Conclusion

