mirror of
https://github.com/youwen5/site.git
synced 2024-11-24 17:33:51 -08:00
fix: prettierignore in markdown files for certain syntax
This commit is contained in:
parent
eb93966e5f
commit
736018cb9b
1 changed files with 24 additions and 8 deletions
|
@ -14,25 +14,35 @@ need a more general method.
|
|||
We can approximate some non-polynomial functions by constructing a polynomial with the _same
|
||||
derivatives_ as the function. This is called a _Taylor Polynomial_.
|
||||
|
||||
> [!NOTE] In general, if $c \neq 0$, it's called a Taylor Polynomial. If $c = 0$, then it's a
|
||||
<!-- prettier-ignore -->
|
||||
> [!NOTE]
|
||||
> In general, if $c \neq 0$, it's called a Taylor Polynomial. If $c = 0$, then it's a
|
||||
> Maclaurin Polynomial.
|
||||
|
||||
> [!CAUTION] test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
<!-- prettier-ignore -->
|
||||
> [!CAUTION]
|
||||
> test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
> incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation
|
||||
> ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
|
||||
> voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
|
||||
> [!WARNING] test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
<!-- prettier-ignore -->
|
||||
> [!WARNING]
|
||||
> test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
> incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation
|
||||
> ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
|
||||
> voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
|
||||
> [!TIP] test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
<!-- prettier-ignore -->
|
||||
> [!TIP]
|
||||
> test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
> incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation
|
||||
> ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
|
||||
> voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
|
||||
> [!IMPORTANT] test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
<!-- prettier-ignore -->
|
||||
> [!IMPORTANT]
|
||||
> test lorem ipsum dolor sit amet consectetur adipiscing elit sed do eiusmod tempor
|
||||
> incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation
|
||||
> ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
|
||||
> voluptate velit esse cillum dolore eu fugiat nulla pariatur.
|
||||
|
@ -77,7 +87,9 @@ You can confirm that this polynomial has the same first, second, and third deriv
|
|||
|
||||
Taking repeated derivatives like this leads to a common pattern in all Taylor polynomials.
|
||||
|
||||
> [!NOTE] We use the notation $P_n(x)$ to denote the $n^{th}$ Taylor polynomial
|
||||
<!-- prettier-ignore -->
|
||||
> [!NOTE]
|
||||
> We use the notation $P_n(x)$ to denote the $n^{th}$ Taylor polynomial
|
||||
|
||||
Taylor polynomials take the form:
|
||||
|
||||
|
@ -132,13 +144,17 @@ $$
|
|||
z \in [c,\,x]
|
||||
$$
|
||||
|
||||
> [!TIP] This is a fancy way of saying that $z$ is between $c$ and $x$.
|
||||
<!-- prettier-ignore -->
|
||||
> [!TIP]
|
||||
> This is a fancy way of saying that $z$ is between $c$ and $x$.
|
||||
|
||||
$$
|
||||
\text{Error} = \left|R_n(x)\right|
|
||||
$$
|
||||
|
||||
> [!NOTE] > $R_n$ would be the "next term" in $P_n(x)$ except we put $z$ instead of $c$.
|
||||
<!-- prettier-ignore -->
|
||||
> [!NOTE]
|
||||
> $R_n$ would be the "next term" in $P_n(x)$ except we put $z$ instead of $c$.
|
||||
|
||||
#### Applying to $e^x$
|
||||
|
||||
|
|
Loading…
Reference in a new issue