110 lines
2.2 KiB
Text
110 lines
2.2 KiB
Text
|
#import "./dvd.typ": *
|
||
|
|
||
|
#show: dvdtyp.with(
|
||
|
title: "Pset 1",
|
||
|
author: "Youwen Wu",
|
||
|
)
|
||
|
|
||
|
#set heading(
|
||
|
numbering: (
|
||
|
num => {
|
||
|
return "1." + str(num)
|
||
|
}
|
||
|
),
|
||
|
)
|
||
|
|
||
|
Problems:
|
||
|
|
||
|
1.1: \#1ceij, 2c, 3cdeghjL, 4cdefh, 6, 7cg, 10ce, 11bei, 12a, 13
|
||
|
|
||
|
1.2: \#1bd, 2bd, 3, 5cfgh, 6bcg, 7be, 10bfg, 12bc, 13, 16cde
|
||
|
|
||
|
= Exercises
|
||
|
|
||
|
1. \
|
||
|
c. #[
|
||
|
$x/2$ is a rational number.
|
||
|
|
||
|
True.
|
||
|
] \
|
||
|
e. #[
|
||
|
Either $pi$ is rational and $17$ is a prime, or $7 < 13$ and $81$ is a perfect square.
|
||
|
|
||
|
True.
|
||
|
] \
|
||
|
i. #[
|
||
|
It is not the case that $39$ is prime, or that 64 is a power of 2.
|
||
|
|
||
|
False.
|
||
|
] \
|
||
|
j. #[
|
||
|
There are more than three false statements in this book, and this statement is one of them.
|
||
|
|
||
|
False.
|
||
|
]
|
||
|
|
||
|
2c. #[
|
||
|
$P$ is $5^2 + 12^2 = 13^2$ and $Q$ is $sqrt(2) + sqrt(3) = sqrt(2 + 3)$
|
||
|
|
||
|
$P and Q: "false"$
|
||
|
|
||
|
$P or Q: "true"$
|
||
|
]
|
||
|
|
||
|
3. #[
|
||
|
\
|
||
|
c. $P and not Q$
|
||
|
#[
|
||
|
#table(
|
||
|
columns: 3,
|
||
|
align: center,
|
||
|
[$P$], [$Q$], [$P and not Q$],
|
||
|
[T], [T], [F],
|
||
|
[T], [F], [T],
|
||
|
[F], [T], [F],
|
||
|
[F], [F], [F],
|
||
|
)
|
||
|
] \
|
||
|
d. $P and (Q or not Q)$
|
||
|
#[
|
||
|
#table(
|
||
|
columns: 5,
|
||
|
align: center,
|
||
|
[$P$], [$Q$], [$not Q$], [$Q or not Q$], [$P and (Q or not Q)$],
|
||
|
[T], [T], [F], [T], [T],
|
||
|
[T], [F], [T], [T], [T],
|
||
|
[F], [T], [F], [T], [F],
|
||
|
[F], [F], [T], [T], [F],
|
||
|
)
|
||
|
] \
|
||
|
e. $(P and Q) or not Q$ \
|
||
|
#[
|
||
|
#table(
|
||
|
columns: 5,
|
||
|
align: center,
|
||
|
[$P$], [$Q$], [$P and Q$], [$not Q$], [$(P and Q) or not Q$],
|
||
|
[T], [T], [T], [F], [T],
|
||
|
[F], [T], [F], [F], [F],
|
||
|
[T], [F], [F], [T], [T],
|
||
|
[F], [F], [F], [T], [T],
|
||
|
)
|
||
|
] \
|
||
|
g. $(P or S) and (P or K)$
|
||
|
#table(
|
||
|
columns: (1fr, 1fr, 1fr, 1fr, 1fr, 2fr),
|
||
|
align: center,
|
||
|
[$P$], [$S$], [$K$], [$P or S$], [$P or K$], [$(P or S) and (P or K)$],
|
||
|
[T], [T], [T], [T], [T], [T],
|
||
|
[T], [T], [F], [T], [T], [T],
|
||
|
[T], [F], [T], [T], [T], [T],
|
||
|
[T], [F], [F], [T], [T], [T],
|
||
|
[F], [T], [T], [T], [T], [T],
|
||
|
[F], [T], [F], [T], [F], [F],
|
||
|
[F], [F], [T], [F], [T], [T],
|
||
|
[F], [F], [F], [F], [F], [F],
|
||
|
)
|
||
|
]
|
||
|
|
||
|
|
||
|
= Exercises
|