alexandria/documents/by-course/math-8/pset-1/main.typ
Youwen Wu 15f7d08901
Some checks are pending
Deploy Quartz site to GitHub Pages using Nix / build (push) Waiting to run
Deploy Quartz site to GitHub Pages using Nix / deploy (push) Blocked by required conditions
auto-update(nvim): 2025-01-06 20:03:55
2025-01-06 20:03:55 -08:00

109 lines
2.2 KiB
Text

#import "./dvd.typ": *
#show: dvdtyp.with(
title: "Pset 1",
author: "Youwen Wu",
)
#set heading(
numbering: (
num => {
return "1." + str(num)
}
),
)
Problems:
1.1: \#1ceij, 2c, 3cdeghjL, 4cdefh, 6, 7cg, 10ce, 11bei, 12a, 13
1.2: \#1bd, 2bd, 3, 5cfgh, 6bcg, 7be, 10bfg, 12bc, 13, 16cde
= Exercises
1. \
c. #[
$x/2$ is a rational number.
True.
] \
e. #[
Either $pi$ is rational and $17$ is a prime, or $7 < 13$ and $81$ is a perfect square.
True.
] \
i. #[
It is not the case that $39$ is prime, or that 64 is a power of 2.
False.
] \
j. #[
There are more than three false statements in this book, and this statement is one of them.
False.
]
2c. #[
$P$ is $5^2 + 12^2 = 13^2$ and $Q$ is $sqrt(2) + sqrt(3) = sqrt(2 + 3)$
$P and Q: "false"$
$P or Q: "true"$
]
3. #[
\
c. $P and not Q$
#[
#table(
columns: 3,
align: center,
[$P$], [$Q$], [$P and not Q$],
[T], [T], [F],
[T], [F], [T],
[F], [T], [F],
[F], [F], [F],
)
] \
d. $P and (Q or not Q)$
#[
#table(
columns: 5,
align: center,
[$P$], [$Q$], [$not Q$], [$Q or not Q$], [$P and (Q or not Q)$],
[T], [T], [F], [T], [T],
[T], [F], [T], [T], [T],
[F], [T], [F], [T], [F],
[F], [F], [T], [T], [F],
)
] \
e. $(P and Q) or not Q$ \
#[
#table(
columns: 5,
align: center,
[$P$], [$Q$], [$P and Q$], [$not Q$], [$(P and Q) or not Q$],
[T], [T], [T], [F], [T],
[F], [T], [F], [F], [F],
[T], [F], [F], [T], [T],
[F], [F], [F], [T], [T],
)
] \
g. $(P or S) and (P or K)$
#table(
columns: (1fr, 1fr, 1fr, 1fr, 1fr, 2fr),
align: center,
[$P$], [$S$], [$K$], [$P or S$], [$P or K$], [$(P or S) and (P or K)$],
[T], [T], [T], [T], [T], [T],
[T], [T], [F], [T], [T], [T],
[T], [F], [T], [T], [T], [T],
[T], [F], [F], [T], [T], [T],
[F], [T], [T], [T], [T], [T],
[F], [T], [F], [T], [F], [F],
[F], [F], [T], [F], [T], [T],
[F], [F], [F], [F], [F], [F],
)
]
= Exercises