auto-update(nvim): 2025-01-06 12:48:48
This commit is contained in:
parent
75ab5ac3c7
commit
18cb39de9b
2 changed files with 324 additions and 0 deletions
255
documents/by-course/math-8/course-notes/dvd.typ
Normal file
255
documents/by-course/math-8/course-notes/dvd.typ
Normal file
|
@ -0,0 +1,255 @@
|
|||
#import "@preview/ctheorems:1.1.2": *
|
||||
#import "@preview/showybox:2.0.1": showybox
|
||||
|
||||
#let colors = (
|
||||
rgb("#9E9E9E"),
|
||||
rgb("#F44336"),
|
||||
rgb("#E91E63"),
|
||||
rgb("#9C27B0"),
|
||||
rgb("#673AB7"),
|
||||
rgb("#3F51B5"),
|
||||
rgb("#2196F3"),
|
||||
rgb("#03A9F4"),
|
||||
rgb("#00BCD4"),
|
||||
rgb("#009688"),
|
||||
rgb("#4CAF50"),
|
||||
rgb("#8BC34A"),
|
||||
rgb("#CDDC39"),
|
||||
rgb("#FFEB3B"),
|
||||
rgb("#FFC107"),
|
||||
rgb("#FF9800"),
|
||||
rgb("#FF5722"),
|
||||
rgb("#795548"),
|
||||
rgb("#9E9E9E"),
|
||||
)
|
||||
|
||||
#let dvdtyp(
|
||||
title: "",
|
||||
subtitle: "",
|
||||
author: "",
|
||||
abstract: none,
|
||||
body,
|
||||
) = {
|
||||
set document(title: title)
|
||||
|
||||
show: thmrules
|
||||
|
||||
set page(
|
||||
numbering: "1",
|
||||
number-align: center,
|
||||
header: locate(loc => {
|
||||
if loc.page() == 1 {
|
||||
return
|
||||
}
|
||||
box(stroke: (bottom: 0.7pt), inset: 0.2em)[#text(
|
||||
font: "Libertinus Serif",
|
||||
)[
|
||||
#author #h(1fr)#title
|
||||
]]
|
||||
}),
|
||||
)
|
||||
|
||||
set heading(numbering: "1.")
|
||||
show heading: it => {
|
||||
set text(font: "Libertinus Serif")
|
||||
set par(first-line-indent: 0em)
|
||||
|
||||
if it.numbering != none {
|
||||
text(rgb("#2196F3"), weight: 500)[#sym.section]
|
||||
|
||||
text(rgb("#2196F3"))[#counter(heading).display() ]
|
||||
}
|
||||
it.body
|
||||
v(0.6em)
|
||||
}
|
||||
|
||||
set text(font: "New Computer Modern", lang: "en")
|
||||
|
||||
show math.equation: set text(weight: 400)
|
||||
|
||||
|
||||
// Title row.
|
||||
align(center)[
|
||||
#set text(font: "Libertinus Serif")
|
||||
#block(text(weight: 700, 25pt, title))
|
||||
#v(0.4em, weak: true)
|
||||
#if subtitle != none [#text(18pt, weight: 500)[#subtitle]]
|
||||
#v(0.3em, weak: true)
|
||||
#if author != none [#text(14pt)[by #author]]
|
||||
|
||||
]
|
||||
|
||||
if abstract != none [#align(center)[#abstract]]
|
||||
|
||||
set outline(fill: repeat[~.], indent: 1em)
|
||||
|
||||
show outline: set heading(numbering: none)
|
||||
show outline: set par(first-line-indent: 0em)
|
||||
|
||||
show outline.entry.where(level: 1): it => {
|
||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
|
||||
}
|
||||
show outline.entry: it => {
|
||||
h(1em)
|
||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
|
||||
}
|
||||
|
||||
|
||||
// Main body.
|
||||
set par(
|
||||
justify: true,
|
||||
first-line-indent: 1em,
|
||||
)
|
||||
|
||||
body
|
||||
}
|
||||
|
||||
#let thmtitle(t, color: rgb("#000000")) = {
|
||||
return text(
|
||||
font: "Libertinus Serif",
|
||||
weight: "semibold",
|
||||
fill: color,
|
||||
)[#t]
|
||||
}
|
||||
#let thmname(t, color: rgb("#000000")) = {
|
||||
return text(font: "Libertinus Serif", fill: color)[(#t)]
|
||||
}
|
||||
|
||||
#let thmtext(t, color: rgb("#000000")) = {
|
||||
let a = t.children
|
||||
if (a.at(0) == [ ]) {
|
||||
a.remove(0)
|
||||
}
|
||||
t = a.join()
|
||||
|
||||
return text(font: "New Computer Modern", fill: color)[#t]
|
||||
}
|
||||
|
||||
#let thmbase(
|
||||
identifier,
|
||||
head,
|
||||
..blockargs,
|
||||
supplement: auto,
|
||||
padding: (top: 0.5em, bottom: 0.5em),
|
||||
namefmt: x => [(#x)],
|
||||
titlefmt: strong,
|
||||
bodyfmt: x => x,
|
||||
separator: [#h(0.1em).#h(0.2em) \ ],
|
||||
base: "heading",
|
||||
base_level: none,
|
||||
) = {
|
||||
if supplement == auto {
|
||||
supplement = head
|
||||
}
|
||||
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
|
||||
if not name == none {
|
||||
name = [ #namefmt(name)]
|
||||
} else {
|
||||
name = []
|
||||
}
|
||||
if title == auto {
|
||||
title = head
|
||||
}
|
||||
if not number == none {
|
||||
title += " " + number
|
||||
}
|
||||
title = titlefmt(title)
|
||||
body = bodyfmt(body)
|
||||
pad(
|
||||
..padding,
|
||||
showybox(
|
||||
width: 100%,
|
||||
radius: 0.3em,
|
||||
breakable: true,
|
||||
padding: (top: 0em, bottom: 0em),
|
||||
..blockargs.named(),
|
||||
..blockargs_individual.named(),
|
||||
[#title#name#titlefmt(separator)#body],
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
let auxthmenv = thmenv(
|
||||
identifier,
|
||||
base,
|
||||
base_level,
|
||||
boxfmt,
|
||||
).with(supplement: supplement)
|
||||
|
||||
return auxthmenv.with(numbering: "1.1")
|
||||
}
|
||||
|
||||
#let styled-thmbase = thmbase.with(
|
||||
titlefmt: thmtitle,
|
||||
namefmt: thmname,
|
||||
bodyfmt: thmtext,
|
||||
)
|
||||
|
||||
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
|
||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
||||
namefmt: thmname.with(color: color.darken(30%)),
|
||||
frame: (
|
||||
body-color: color.lighten(92%),
|
||||
border-color: color.darken(10%),
|
||||
thickness: 1.5pt,
|
||||
inset: 1.2em,
|
||||
radius: 0.3em,
|
||||
),
|
||||
..builderargs,
|
||||
)
|
||||
|
||||
#let builder-thmline(
|
||||
color: rgb("#000000"),
|
||||
..builderargs,
|
||||
) = styled-thmbase.with(
|
||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
||||
namefmt: thmname.with(color: color.darken(30%)),
|
||||
frame: (
|
||||
body-color: color.lighten(92%),
|
||||
border-color: color.darken(10%),
|
||||
thickness: (left: 2pt),
|
||||
inset: 1.2em,
|
||||
radius: 0em,
|
||||
),
|
||||
..builderargs,
|
||||
)
|
||||
|
||||
#let problem-style = builder-thmbox(
|
||||
color: colors.at(11),
|
||||
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
||||
)
|
||||
|
||||
#let problem = problem-style("problem", "Problem")
|
||||
|
||||
#let theorem-style = builder-thmbox(
|
||||
color: colors.at(6),
|
||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
||||
)
|
||||
|
||||
#let theorem = theorem-style("theorem", "Theorem")
|
||||
#let lemma = theorem-style("lemma", "Lemma")
|
||||
#let corollary = theorem-style("corollary", "Corollary")
|
||||
|
||||
#let definition-style = builder-thmline(color: colors.at(8))
|
||||
|
||||
#let definition = definition-style("definition", "Definition")
|
||||
#let proposition = definition-style("proposition", "Proposition")
|
||||
#let remark = definition-style("remark", "Remark")
|
||||
#let observation = definition-style("observation", "Observation")
|
||||
|
||||
#let example-style = builder-thmline(color: colors.at(16))
|
||||
|
||||
#let example = example-style("example", "Example").with(numbering: none)
|
||||
|
||||
#let proof(body, name: none) = {
|
||||
thmtitle[Proof]
|
||||
if name != none {
|
||||
[ #thmname[#name]]
|
||||
}
|
||||
thmtitle[.]
|
||||
body
|
||||
h(1fr)
|
||||
$square$
|
||||
}
|
69
documents/by-course/math-8/course-notes/main.typ
Normal file
69
documents/by-course/math-8/course-notes/main.typ
Normal file
|
@ -0,0 +1,69 @@
|
|||
#import "./dvd.typ": *
|
||||
|
||||
#show: dvdtyp.with(
|
||||
title: "Math 8",
|
||||
subtitle: [UC Santa Barbara],
|
||||
author: "Youwen Wu",
|
||||
)
|
||||
|
||||
#outline()
|
||||
|
||||
= Chapter 1: Logic and Proofs
|
||||
|
||||
== Trivial Preliminaries
|
||||
|
||||
Definitions barely worth considering. Included purely for posterity.
|
||||
|
||||
#definition("Proposition")[
|
||||
A proposition is a sentence which is either true or false.
|
||||
]
|
||||
|
||||
#example("Primes")[
|
||||
The numbers 5 and 7 are prime.
|
||||
]
|
||||
|
||||
#example("Not a proposition")[
|
||||
$x^2 + 6x + 8 = 0$
|
||||
]
|
||||
|
||||
Propositions may be stated in the formalism of mathematics using connectives, as *propositional forms*.
|
||||
|
||||
#definition("Propositional forms")[
|
||||
Let $P$ and $Q$ be propositions. Then:
|
||||
|
||||
+ The conjunction of $P$ and $Q$ is written $P and Q$ ($P$ and $Q$).
|
||||
+ The disjunction of $P$ and $Q$ is written $P or Q$ ($P$ or $Q$) (here "or" is the inclusive or).
|
||||
+ The negation of $P$ is written $not P$.
|
||||
]
|
||||
|
||||
#definition("Tautology")[
|
||||
A propositional form for which all of its values are true. In other words, a statement which is always true.
|
||||
]
|
||||
|
||||
#definition("Contradiction")[
|
||||
A propositional form for which all of its values are false. In other words, a statement which is always false.
|
||||
]
|
||||
|
||||
#problem[Prove that $(P or Q) or (not P and not Q)$ is a tautology][
|
||||
Trivial, omitted.
|
||||
]
|
||||
|
||||
#example[Several denials of the statement "integer $n$ is even"][
|
||||
- It is not the case that integer $n$ is even.
|
||||
- Integer $n$ is not even.
|
||||
- $n != 2m, forall m in ZZ$
|
||||
- $n = 2m + 1, exists m in ZZ$
|
||||
]
|
||||
|
||||
DeMorgan's Laws tell us how to distribute logical connectives across parentheses.
|
||||
|
||||
#theorem[DeMorgan's Laws][
|
||||
+ $not (P or Q) = not P and not Q$
|
||||
+ $not (P and Q) = not P or not Q$
|
||||
]
|
||||
|
||||
#proof[
|
||||
Trivially, by completing a truth table.
|
||||
]
|
||||
|
||||
|
Loading…
Reference in a new issue