auto-update(nvim): 2025-02-19 16:36:00
This commit is contained in:
parent
8ade952fdf
commit
19a41f3870
1 changed files with 164 additions and 106 deletions
|
@ -242,10 +242,7 @@ Requires equally likely outcomes and finite sample spaces.
|
||||||
|
|
||||||
An approach done commonly by applied statisticians who work in the disgusting
|
An approach done commonly by applied statisticians who work in the disgusting
|
||||||
real world. This is where we are generally concerned with irrelevant concerns
|
real world. This is where we are generally concerned with irrelevant concerns
|
||||||
like accurate sampling and $p$-values and such. I am told this is covered in
|
like accurate sampling and $p$-values and such.
|
||||||
PSTAT 120B, so hopefully I can avoid ever taking that class (as a pure math
|
|
||||||
major).
|
|
||||||
|
|
||||||
$
|
$
|
||||||
P(A) = (hash "of times" A "occurs in large number of trials") / (hash "of trials")
|
P(A) = (hash "of times" A "occurs in large number of trials") / (hash "of trials")
|
||||||
$
|
$
|
||||||
|
@ -768,6 +765,72 @@ us generalize to more than two colors.
|
||||||
Both approaches given the same answer.
|
Both approaches given the same answer.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
= Baye's theorem and conditional probability
|
||||||
|
|
||||||
|
== Conditional probability, partitions, law of total probability
|
||||||
|
|
||||||
|
Sometimes we want to analyze the probability of events in a sample space given
|
||||||
|
that we already know another event has occurred. Ergo, we want the probability
|
||||||
|
of $A in Omega$ conditional on the event $B in Omega$.
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
For two events $A, B in Omega$, the probability of $A$ given $B$ is written
|
||||||
|
$
|
||||||
|
P(A | B)
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
To calculate the conditional probability, use the following formula:
|
||||||
|
$
|
||||||
|
P(A | B) = (P(A B)) / (P(B))
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
Oftentimes we don't know $P(B)$, but we do know $P(B)$ given some events in
|
||||||
|
$Omega$. That is, we know the probability of $B$ conditional on some events.
|
||||||
|
For example, if we have a 50% chance of choosing a rigged (6-sided) die and a
|
||||||
|
50% chance of choosing a fair die, we know the probability of getting side $n$
|
||||||
|
given that we have the rigged die, and the probability of side $n$ given that
|
||||||
|
we have the fair die. Also note that we know the probability of both events
|
||||||
|
we're conditioning on (50% each), and they're disjoint events.
|
||||||
|
|
||||||
|
In these situations, the following law is useful:
|
||||||
|
|
||||||
|
#theorem[Law of total probability][
|
||||||
|
Given a _partition_ of $Omega$ with pairwise disjoint subsets $A_1, A_2, A_3, ..., A_n in Omega$, such that
|
||||||
|
$
|
||||||
|
union.big_(A_i in Omega) A_i = Omega \
|
||||||
|
sect.big_(A_i in Omega) A_i = emptyset
|
||||||
|
$
|
||||||
|
The probability of an event $B in Omega$ is given by
|
||||||
|
$
|
||||||
|
P(B) = P(B | A_1) P(A_1) + P(B | A_2) P(A_2) + dots.c + P(B | A_n) P(A_n)
|
||||||
|
$
|
||||||
|
]<law-total-prob>
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
This is easy to show by writing the definition of the conditional probability
|
||||||
|
and simplifying.
|
||||||
|
]
|
||||||
|
|
||||||
|
== Baye's theorem
|
||||||
|
|
||||||
|
Finally let's discuss a rule for inverting conditional probabilities, that is,
|
||||||
|
getting $P(B | A)$ from $P(A | B)$.
|
||||||
|
|
||||||
|
#theorem[Baye's theorem][
|
||||||
|
Given two events $A,B in Omega$,
|
||||||
|
$
|
||||||
|
P(A | B) = (P(B | A)P(A)) / (P(B | A)P(A) + P(B | A^c)P(A^c))
|
||||||
|
$
|
||||||
|
]
|
||||||
|
|
||||||
|
#proof[
|
||||||
|
Apply the definition of conditional probability, then apply @law-total-prob
|
||||||
|
noting that $A$ and $A^c$ are a partitioning of $Omega$.
|
||||||
|
]
|
||||||
|
|
||||||
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
|
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
|
||||||
|
|
||||||
== Independence
|
== Independence
|
||||||
|
@ -777,7 +840,9 @@ us generalize to more than two colors.
|
||||||
"Joint probability is equal to product of their marginal probabilities."
|
"Joint probability is equal to product of their marginal probabilities."
|
||||||
]
|
]
|
||||||
|
|
||||||
#fact[This definition must be used to show the independence of two events.]
|
#fact[
|
||||||
|
This definition must be used to show the independence of two events.
|
||||||
|
]
|
||||||
|
|
||||||
#fact[
|
#fact[
|
||||||
If $A$ and $B$ are independent, then,
|
If $A$ and $B$ are independent, then,
|
||||||
|
@ -836,6 +901,99 @@ us generalize to more than two colors.
|
||||||
different events $A_i$ and $A_j$ are independent for any $i != j$.
|
different events $A_i$ and $A_j$ are independent for any $i != j$.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
= A bit of review on random variables
|
||||||
|
|
||||||
|
== Random variables, discrete random variables
|
||||||
|
|
||||||
|
Recall that a random variable $X$ is a function $X : Omega -> RR$ that gives
|
||||||
|
the probability of an event $omega in Omega$. The _probability distribution_ of
|
||||||
|
$X$ gives its important probabilistic information. The probability distribution
|
||||||
|
is a description of the probabilities $P(X in B)$ for subsets $B in RR$. We
|
||||||
|
describe the probability density function and the cumulative distribution
|
||||||
|
function.
|
||||||
|
|
||||||
|
A random variable $X$ is discrete if there is countable $A$ such that $P(X in
|
||||||
|
A) = 1$. $k$ is a possible value if $P(X = k) > 0$.
|
||||||
|
|
||||||
|
A discrete random variable has probability distribution entirely determined by
|
||||||
|
p.m.f $p(k) = P(X = k)$. The p.m.f. is a function from the set of possible
|
||||||
|
values of $X$ into $[0,1]$. Labeling the p.m.f. with the random variable is
|
||||||
|
done by $p_X (k)$.
|
||||||
|
|
||||||
|
By the axioms of probability,
|
||||||
|
|
||||||
|
$
|
||||||
|
sum_k p_X (k) = sum_k P(X=k) = 1
|
||||||
|
$
|
||||||
|
|
||||||
|
For a subset $B subset RR$,
|
||||||
|
|
||||||
|
$
|
||||||
|
P(X in B) = sum_(k in B) p_X (k)
|
||||||
|
$
|
||||||
|
|
||||||
|
== Continuous random variables
|
||||||
|
|
||||||
|
Now we introduce another major class of random variables.
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
Let $X$ be a random variable. If $f$ satisfies
|
||||||
|
|
||||||
|
$
|
||||||
|
P(X <= b) = integral^b_(-infinity) f(x) dif x
|
||||||
|
$
|
||||||
|
|
||||||
|
for all $b in RR$, then $f$ is the *probability density function* of $X$.
|
||||||
|
]
|
||||||
|
|
||||||
|
The probability that $X in (-infinity, b]$ is equal to the area under the graph
|
||||||
|
of $f$ from $-infinity$ to $b$.
|
||||||
|
|
||||||
|
A corollary is the following.
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
$ P(X in B) = integral_B f(x) dif x $
|
||||||
|
]
|
||||||
|
|
||||||
|
for any $B subset RR$ where integration makes sense.
|
||||||
|
|
||||||
|
The set can be bounded or unbounded, or any collection of intervals.
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
$ P(a <= X <= b) = integral_a^b f(x) dif x $
|
||||||
|
$ P(X > a) = integral_a^infinity f(x) dif x $
|
||||||
|
]
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
If a random variable $X$ has density function $f$ then individual point
|
||||||
|
values have probability zero:
|
||||||
|
|
||||||
|
$ P(X = c) = integral_c^c f(x) dif x = 0, forall c in RR $
|
||||||
|
]
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
It follows a random variable with a density function is not discrete. Also
|
||||||
|
the probabilities of intervals are not changed by including or excluding
|
||||||
|
endpoints.
|
||||||
|
]
|
||||||
|
|
||||||
|
How to determine which functions are p.d.f.s? Since $P(-infinity < X <
|
||||||
|
infinity) = 1$, a p.d.f. $f$ must satisfy
|
||||||
|
|
||||||
|
$
|
||||||
|
f(x) >= 0 forall x in RR \
|
||||||
|
integral^infinity_(-infinity) f(x) dif x = 1
|
||||||
|
$
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
Random variables with density functions are called _continuous_ random
|
||||||
|
variables. This does not imply that the random variable is a continuous
|
||||||
|
function on $Omega$ but it is standard terminology.
|
||||||
|
]
|
||||||
|
|
||||||
|
Named distributions of continuous random variables are introduced in the
|
||||||
|
following chapters.
|
||||||
|
|
||||||
= Lecture #datetime(day: 27, year: 2025, month: 1).display()
|
= Lecture #datetime(day: 27, year: 2025, month: 1).display()
|
||||||
|
|
||||||
== Bernoulli trials
|
== Bernoulli trials
|
||||||
|
@ -1138,107 +1296,7 @@ exactly one sequence that gives us success.
|
||||||
$
|
$
|
||||||
]
|
]
|
||||||
|
|
||||||
= Notes on textbook chapter 3
|
= Some more discrete distributions
|
||||||
|
|
||||||
Recall that a random variable $X$ is a function $X : Omega -> RR$ that gives
|
|
||||||
the probability of an event $omega in Omega$. The _probability distribution_ of
|
|
||||||
$X$ gives its important probabilistic information. The probability distribution
|
|
||||||
is a description of the probabilities $P(X in B)$ for subsets $B in RR$. We
|
|
||||||
describe the probability density function and the cumulative distribution
|
|
||||||
function.
|
|
||||||
|
|
||||||
A random variable $X$ is discrete if there is countable $A$ such that $P(X in
|
|
||||||
A) = 1$. $k$ is a possible value if $P(X = k) > 0$.
|
|
||||||
|
|
||||||
A discrete random variable has probability distribution entirely determined by
|
|
||||||
p.m.f $p(k) = P(X = k)$. The p.m.f. is a function from the set of possible
|
|
||||||
values of $X$ into $[0,1]$. Labeling the p.m.f. with the random variable is
|
|
||||||
done by $p_X (k)$.
|
|
||||||
|
|
||||||
By the axioms of probability,
|
|
||||||
|
|
||||||
$
|
|
||||||
sum_k p_X (k) = sum_k P(X=k) = 1
|
|
||||||
$
|
|
||||||
|
|
||||||
For a subset $B subset RR$,
|
|
||||||
|
|
||||||
$
|
|
||||||
P(X in B) = sum_(k in B) p_X (k)
|
|
||||||
$
|
|
||||||
|
|
||||||
Now we introduce another major class of random variables.
|
|
||||||
|
|
||||||
#definition[
|
|
||||||
Let $X$ be a random variable. If $f$ satisfies
|
|
||||||
|
|
||||||
$
|
|
||||||
P(X <= b) = integral^b_(-infinity) f(x) dif x
|
|
||||||
$
|
|
||||||
|
|
||||||
for all $b in RR$, then $f$ is the *probability density function* of $X$.
|
|
||||||
]
|
|
||||||
|
|
||||||
The probability that $X in (-infinity, b]$ is equal to the area under the graph
|
|
||||||
of $f$ from $-infinity$ to $b$.
|
|
||||||
|
|
||||||
A corollary is the following.
|
|
||||||
|
|
||||||
#fact[
|
|
||||||
$ P(X in B) = integral_B f(x) dif x $
|
|
||||||
]
|
|
||||||
|
|
||||||
for any $B subset RR$ where integration makes sense.
|
|
||||||
|
|
||||||
The set can be bounded or unbounded, or any collection of intervals.
|
|
||||||
|
|
||||||
#fact[
|
|
||||||
$ P(a <= X <= b) = integral_a^b f(x) dif x $
|
|
||||||
$ P(X > a) = integral_a^infinity f(x) dif x $
|
|
||||||
]
|
|
||||||
|
|
||||||
#fact[
|
|
||||||
If a random variable $X$ has density function $f$ then individual point
|
|
||||||
values have probability zero:
|
|
||||||
|
|
||||||
$ P(X = c) = integral_c^c f(x) dif x = 0, forall c in RR $
|
|
||||||
]
|
|
||||||
|
|
||||||
#remark[
|
|
||||||
It follows a random variable with a density function is not discrete. Also
|
|
||||||
the probabilities of intervals are not changed by including or excluding
|
|
||||||
endpoints.
|
|
||||||
]
|
|
||||||
|
|
||||||
How to determine which functions are p.d.f.s? Since $P(-infinity < X <
|
|
||||||
infinity) = 1$, a p.d.f. $f$ must satisfy
|
|
||||||
|
|
||||||
$
|
|
||||||
f(x) >= 0 forall x in RR \
|
|
||||||
integral^infinity_(-infinity) f(x) dif x = 1
|
|
||||||
$
|
|
||||||
|
|
||||||
#fact[
|
|
||||||
Random variables with density functions are called _continuous_ random
|
|
||||||
variables. This does not imply that the random variable is a continuous
|
|
||||||
function on $Omega$ but it is standard terminology.
|
|
||||||
]
|
|
||||||
|
|
||||||
#definition[
|
|
||||||
Let $[a,b]$ be a bounded interval on the real line. A random variable $X$ has
|
|
||||||
the *uniform distribution* on $[a,b]$ if $X$ has density function
|
|
||||||
|
|
||||||
$
|
|
||||||
f(x) = cases(
|
|
||||||
1/(b-a)", if" x in [a,b],
|
|
||||||
0", if" x in.not [a,b]
|
|
||||||
)
|
|
||||||
$
|
|
||||||
|
|
||||||
Abbreviate this by $X ~ "Unif"[a,b]$.
|
|
||||||
]
|
|
||||||
|
|
||||||
= Notes on week 3 lecture slides
|
|
||||||
|
|
||||||
== Negative binomial
|
== Negative binomial
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue