auto-update(nvim): 2025-01-10 12:44:05
This commit is contained in:
parent
bbd872861c
commit
66554ba4e0
2 changed files with 90 additions and 0 deletions
|
@ -67,6 +67,15 @@ Attendance to discussion sections is mandatory.
|
|||
- $y' = y^2$
|
||||
]
|
||||
|
||||
#definition[
|
||||
In general, a differential equation is called linear if and only if it can be
|
||||
written in the form
|
||||
$
|
||||
a_n (t) (dif^n y) / (dif t^n) + a_(n-1) (t) (d^(n-1) y) / (d t^(n-1)) + dots + a_1 (t) (dif y) / (dif t) + a_0 (t) y = g(t)
|
||||
$
|
||||
where $a_k (t)$ and $g(t)$ are single variable functions of $t$.
|
||||
]
|
||||
|
||||
#definition[
|
||||
*Equilibrium solutions* for the ODE
|
||||
$ y' = F(x,y) $
|
||||
|
@ -87,3 +96,71 @@ Attendance to discussion sections is mandatory.
|
|||
What are the equilibria of the equation
|
||||
$ y' = y(y - x) $
|
||||
]
|
||||
|
||||
== General solution of a first order linear ODE
|
||||
|
||||
We start with the differential equation in standard form
|
||||
|
||||
$ (dif y) / (dif t) + p(t) y = g(t) $
|
||||
|
||||
where $p(t)$ and $g(t)$ are continuous single variable functions of $t$.
|
||||
|
||||
Then let us assume the existence of an *integrating factor* $mu(t)$, such that
|
||||
|
||||
$ mu(t) p(t) = mu'(t) $
|
||||
|
||||
and then multiplying each term by $mu(t)$ to obtain
|
||||
|
||||
$ mu(t) (dif y) / (dif t) + mu(t) p(t) y = mu(t) g(t) $
|
||||
|
||||
Then
|
||||
|
||||
$ mu(t) (dif y) / (dif t) + mu'(t) y = mu(t) g(t) $
|
||||
|
||||
Then recognize that the left side of the equation is the product rule to obtain
|
||||
|
||||
$
|
||||
(mu(t) y(t))' &= mu(t) g(t) \
|
||||
integral (mu(t) y(t))' dif t &= integral mu(t) g(t) dif t \
|
||||
mu(t) y(t) + C &= integral mu(t) g(t) dif t \
|
||||
y(t) &= (integral mu(t) g(t) dif t + C) / (mu(t))
|
||||
$
|
||||
|
||||
Now we have a general solution but we need to determine $mu(t)$.
|
||||
|
||||
$
|
||||
mu(t) p(t) &= mu'(t) \
|
||||
(mu'(t)) / (mu(t)) &= p(t) \
|
||||
(ln mu(t))' &= p(t)
|
||||
$
|
||||
|
||||
So now
|
||||
|
||||
$
|
||||
integral mu(t) + k &= integral p(t) dif t \
|
||||
ln mu(t) &= integral p(t) dif t + k \
|
||||
mu(t) = e^(integral p(t) dif t + k) &= k e^(integral p(t) dif t)
|
||||
$
|
||||
|
||||
Now substitute
|
||||
|
||||
$
|
||||
y(t) &= (integral k e^(integral p(t) dif t) g(t) dif t + C) / (k e^(integral p(t))) \
|
||||
&= (k integral e^(integral p(t) dif t) g(t) dif t + C) / (k e^(integral p(t)))
|
||||
$
|
||||
|
||||
Now do some cursed constant manipulation to obtain a final solution with only one arbitrary constant
|
||||
|
||||
$
|
||||
y(t) = (integral e^(integral p(t) dif t) g(t) dif t + C) / (e^(integral p(t)))
|
||||
$
|
||||
|
||||
#remark[
|
||||
The most useful result to us is
|
||||
$
|
||||
y(t) &= (integral mu(t) g(t) dif t + C) / (mu(t)) \
|
||||
mu(t) &= e^(integral p(t) dif t)
|
||||
$
|
||||
We can easily obtain a solution form for any first order linear ODE simply by
|
||||
identifying $p(t)$ and $g(t)$.
|
||||
]
|
||||
|
|
|
@ -59,3 +59,16 @@ point or vector.
|
|||
How far is the point $x_1, x_2, x_3$ from the origin? \
|
||||
Answer: $x_1^2 + x_2^2 + x_3^2$
|
||||
]
|
||||
|
||||
#definition[
|
||||
For vectors $u$ and $v$, where
|
||||
$ v = vec(v_1, v_2, dots.v, n), u = vec(u_1, u_2, dots.v, n) $
|
||||
The dot product is defined as
|
||||
$ sum_(i=1)^n v_i dot u_i $
|
||||
]
|
||||
|
||||
#proposition[
|
||||
The dot product of two vectors is the product of their magnitudes and the cosine of the angle between.
|
||||
|
||||
$ arrow(v) dot arrow(w) = ||arrow(v)|| dot ||arrow(w)|| cos theta $
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue