auto-update(nvim): 2025-01-09 16:15:17
This commit is contained in:
parent
366fefd38a
commit
bbd872861c
1 changed files with 46 additions and 1 deletions
|
@ -1,4 +1,5 @@
|
|||
#import "./dvd.typ": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
#show: dvdtyp.with(
|
||||
title: "Math 6A Course Notes",
|
||||
|
@ -11,6 +12,50 @@
|
|||
|
||||
= Lecture #datetime(day: 7, month: 1, year: 2025).display()
|
||||
|
||||
== Parametric curves
|
||||
== Review of fundamental concepts
|
||||
|
||||
You can parameterize curves.
|
||||
|
||||
#example[Unit circle][
|
||||
$
|
||||
x = cos(t) \
|
||||
y = sin(t)
|
||||
$
|
||||
]
|
||||
|
||||
For an implicit equation
|
||||
$ y = f(t) $
|
||||
Parameterize it by setting
|
||||
$ x = t \ y = f(t) $
|
||||
|
||||
Parameterize a line passing through two points $arrow(p)_1$ and $arrow(p)_2$ by
|
||||
$ arrow(c)(t) = arrow(p)_1 + t (arrow(p)_2 - arrow(p)_1) $
|
||||
|
||||
Take the derivative of each component to find the velocity vector. The
|
||||
magnitude of velocity is speed.
|
||||
|
||||
#example[
|
||||
$
|
||||
arrow(c)(t) = <5t, sin(t)> \
|
||||
arrow(v)(t) = <5, cos(t)>
|
||||
$
|
||||
]
|
||||
|
||||
== Polar coordinates
|
||||
|
||||
Write a set of Cartesian coordinates in $RR^2$ as polar coordinates instead, by
|
||||
a distance from origin $r$ and angle about the origin $theta$.
|
||||
|
||||
$ (x,y) -> (r, theta) $
|
||||
|
||||
= Lecture #datetime(day: 9, month: 1, year: 2025).display()
|
||||
|
||||
== Vectors
|
||||
|
||||
A dot product of two vectors is a generalization of the sense of size for a
|
||||
point or vector.
|
||||
|
||||
#example[
|
||||
How far is the point $x_1, x_2, x_3$ from the origin? \
|
||||
Answer: $x_1^2 + x_2^2 + x_3^2$
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue