auto-update(nvim): 2025-01-24 23:00:23
This commit is contained in:
parent
099089e55e
commit
67a37cf114
2 changed files with 68 additions and 34 deletions
|
@ -1,7 +1,7 @@
|
|||
#import "./dvd.typ": *
|
||||
#import "@youwen/zen:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
#show: dvdtyp.with(
|
||||
#show: zen.with(
|
||||
title: "Math 6A Course Notes",
|
||||
author: "Youwen Wu",
|
||||
date: "Winter 2025",
|
||||
|
@ -72,3 +72,30 @@ point or vector.
|
|||
|
||||
$ arrow(v) dot arrow(w) = ||arrow(v)|| dot ||arrow(w)|| cos theta $
|
||||
]
|
||||
|
||||
= Lecture #datetime(day: 23, month: 1, year: 2025).display()
|
||||
|
||||
Midterm is next Thursday in class!
|
||||
|
||||
== Arclength and curvature
|
||||
|
||||
Easy way of finding curvature: reparameterize curve with speed 1, then
|
||||
curvature is acceleration. If we can't do that then we need some other
|
||||
technique.
|
||||
|
||||
Given $arrow(c)(t) = <2t^(-1), 6, 2t>$, find the curvature $kappa(t)$.
|
||||
$
|
||||
kappa (t) = (||arrow(c)'(t) times arrow(c)''(t)||) / (||arrow(c)'(t)||^3)
|
||||
$
|
||||
|
||||
== Arclength parameterization
|
||||
|
||||
Find an arc-length parameterization of $arrow(c)(t) = <e^t sin(t), e^t cos(t), 5e^t>$.
|
||||
|
||||
Let $s = 0$ when $t = 0$ and let $s$ be the arc-length that has traveled along
|
||||
the curve after $t$ seconds, then we can find $s$ by integrating the curve's
|
||||
speed over $t$.
|
||||
|
||||
$
|
||||
s(t) = integral^t_0 ||arrow(c)'(u)|| dif u
|
||||
$
|
||||
|
|
|
@ -33,7 +33,7 @@ $ ((forall x)H(x)) or ((forall x)(not H(x))) $
|
|||
|
||||
Again let $H(p)$ be true if a person is honest and false otherwise.
|
||||
|
||||
$ (exists x)(exists y)(H(x) and not H(y)) $
|
||||
$ (exists x)(H(x)) and ((exists y) not H(y)) $
|
||||
|
||||
1j.
|
||||
|
||||
|
@ -41,25 +41,25 @@ $ (forall x)(exists y)(x > y) $
|
|||
|
||||
1k.
|
||||
|
||||
$ (exists.not x)(forall y)(x > y) $
|
||||
$ (forall x)(exists y)(not (x > y)) $
|
||||
|
||||
1L.
|
||||
|
||||
$ (x in ZZ)(y in ZZ)(y > x)(exists z in RR)(x < z < y) $
|
||||
$ (forall x in ZZ)(forall y in ZZ)(y > x)(exists z in RR)(x < z < y) $
|
||||
|
||||
1m.
|
||||
|
||||
$ (exists x in ZZ^+)(exists.not y in ZZ^+)(y < x) $
|
||||
$ (exists x in ZZ^+)(forall y in ZZ^+)(x <= y) $
|
||||
|
||||
1p.
|
||||
|
||||
$ (forall x)(x > 0)(exists y)(2^y = x) $
|
||||
$ (forall x)(x > 0)(exists! y)(2^y = x) $
|
||||
|
||||
2f.
|
||||
|
||||
Let $H(p)$ be true if a person is honest and false otherwise.
|
||||
|
||||
$ (exists x)(exists y)(H(x) and not H(y)) $
|
||||
$ (exists x)(H(x) and ((exists y) not H(y)) $
|
||||
|
||||
In English: Some people are honest and some people are not honest.
|
||||
|
||||
|
@ -73,25 +73,36 @@ In English: all people are honest or no one is honest.
|
|||
|
||||
2j.
|
||||
|
||||
$ (exists x)(forall y) (x <= y) $
|
||||
|
||||
$ (exists x)(forall y) not (x > y) $
|
||||
There is an integer such that it is smaller than every other integer y.
|
||||
|
||||
2k.
|
||||
|
||||
$ (forall x)(exists y)(y > x) $
|
||||
$ (exists y)(forall x)(y >= x) $
|
||||
|
||||
There is an integer that is greater than all other integers.
|
||||
|
||||
2L.
|
||||
|
||||
$ (exists x in ZZ)(exists y in ZZ)(forall z)((z > x) and (z > y)) $
|
||||
$ (exists x in ZZ)(exists y in ZZ)(x < y)(forall z)(not (x < z < y)) $
|
||||
|
||||
There exists an integer and a larger integer such that there is no real number
|
||||
between them.
|
||||
|
||||
2m.
|
||||
|
||||
$ (forall x in ZZ^+)(exists y in ZZ^+)(y < x) $
|
||||
|
||||
Any positive integer has an integer less than itself.
|
||||
|
||||
2p.
|
||||
|
||||
$ (exists x)(x > 0)(forall y) not (2^y = x) $
|
||||
|
||||
There is a positive real number such that there is no real number $y$ that
|
||||
satisfies $2^y = x$.
|
||||
|
||||
6a.
|
||||
|
||||
$T$, $U$, $V$.
|
||||
|
@ -182,7 +193,7 @@ one.
|
|||
x y = 4 j k
|
||||
$
|
||||
|
||||
Clearly $x y$ has $4$ in its factors and so $x y | 4$.
|
||||
$x y$ has $4$ in its factors and so $4 | x y $.
|
||||
]
|
||||
|
||||
5d.
|
||||
|
@ -263,7 +274,7 @@ one.
|
|||
$
|
||||
|
||||
Clearly for any $b$ the left side is strictly lower than the right. Repeat
|
||||
this exact for $a$ is negative.
|
||||
this exact reasoning for when $a$ is negative.
|
||||
]
|
||||
|
||||
7d.
|
||||
|
@ -284,15 +295,15 @@ one.
|
|||
7e.
|
||||
|
||||
#proof[
|
||||
If $1 | a$, then we can find some $k in ZZ$ such that $1k = a$. Such a $k$ is
|
||||
$a$, because $1 dot a = a$. Therefore $1 | a$.
|
||||
$1 | a$ if and only if we can find some $k in ZZ$ such that $1k = a$. We can
|
||||
always find such a $k$, which is $a$, because $1 dot a = a$. Therefore $1 | a$ is always true.
|
||||
]
|
||||
|
||||
7f.
|
||||
|
||||
#proof[
|
||||
If $a | a$, we can find some $k in ZZ$ such that $a k = a$. Such a $k$ is $1$,
|
||||
because $a dot 1 = a$. Therefore $a | a$.
|
||||
$a | a$ if and only if we can find some $k in ZZ$ such that $a k = a$. Such a
|
||||
$k$ is $1$, because $a dot 1 = a$. Therefore $a | a$.
|
||||
]
|
||||
|
||||
7g.
|
||||
|
@ -366,8 +377,8 @@ one.
|
|||
|
||||
$ k j a c = b d $
|
||||
|
||||
If $exists n in ZZ, n a c = b d$, then $a c | b d$. We see that $n = k j$.
|
||||
Therefore $a c$ indeed divides $b d$.
|
||||
If $exists n in ZZ, n a c = b d$, then $a c | b d$. We have such an $n = k
|
||||
j$. Therefore $a c$ indeed divides $b d$.
|
||||
]
|
||||
|
||||
8a.
|
||||
|
@ -399,9 +410,9 @@ one.
|
|||
n^2 + n + 3 = n(n + 1) + 3
|
||||
$
|
||||
|
||||
By 7(d), we know that $n(n+1)$ is even $forall n$. Then by 5(h) we can take
|
||||
$x := n(n+1)$ and $y := 3$. Since $x$ is even, $y$ is odd, $x + y$ is odd. So
|
||||
$n^2 + n + 3$ is odd.
|
||||
By the proof in 7(d), we know that $forall n, n(n+1)$ is even. Then by 5(h)
|
||||
we can take $x := n(n+1)$ and $y := 3$. Since $x$ is even, $y$ is odd, $x +
|
||||
y$ is odd. So $n^2 + n + 3$ is odd.
|
||||
]
|
||||
|
||||
9a.
|
||||
|
@ -410,18 +421,14 @@ one.
|
|||
In the case of $x=0$ and $y=0$ we trivially have $0 >= 0$. Otherwise,
|
||||
|
||||
$
|
||||
(x+y) / 2 &>= sqrt(x y) \
|
||||
x+y &>= 2sqrt(x y) \
|
||||
(x+y)^2 &>= 4x y \
|
||||
x^2 + 2 x y + y^2 &>= 4 x y \
|
||||
x^2 - 2 x y + y^2 &>= 0
|
||||
&(x+y) / 2 >= sqrt(x y) \
|
||||
&<=> x+y >= 2sqrt(x y) \
|
||||
&<=> (x+y)^2 >= 4x y \
|
||||
&<=> x^2 + 2 x y + y^2 >= 4 x y \
|
||||
&<=> x^2 - 2 x y + y^2 >= 0 \
|
||||
&<=> (x - y)^2 >= 0
|
||||
$
|
||||
|
||||
THIS IS WRONG FIX IT!!!
|
||||
|
||||
You can think of $x^2 - 2 x y + y^2$ as quadratic with $y$ as a constant. For
|
||||
all possible values of $y$ the equation is nonnegative (since the absolute
|
||||
minimum occurs at the vertex). Therefore the inequality holds true.
|
||||
We know that $forall x in RR, x^2 >= 0$, so this statement is always true, and thus the original is always true as well.
|
||||
]
|
||||
|
||||
11b.
|
||||
|
@ -431,7 +438,7 @@ Grade: C.
|
|||
The assertions that $exists q, b = a q$ and $exists q, c = a q$ are essentially
|
||||
correct but these $q$ are not the same. This can be corrected fairly
|
||||
straightforwardly by replacing one of the $q$ with another variable serving the
|
||||
same purpose, then proceeding.
|
||||
same purpose, then proceeding in a similar fashion.
|
||||
|
||||
11c.
|
||||
|
||||
|
|
Loading…
Reference in a new issue