auto-update(nvim): 2025-02-12 13:22:06
Some checks are pending
Deploy Quartz site to GitHub Pages using Nix / build (push) Waiting to run
Deploy Quartz site to GitHub Pages using Nix / deploy (push) Blocked by required conditions

This commit is contained in:
Youwen Wu 2025-02-12 13:22:06 -08:00
parent 52e2142177
commit 7c8ce35f66
Signed by: youwen5
GPG key ID: 865658ED1FE61EC3

View file

@ -1665,6 +1665,61 @@ $F_z(x)$, we use the special $phi(x)$ and $Phi(x)$.
- use the standard normal probability table in the textbook
]
To evaluate negative values, we can use the symmetry of the normal distribution
to apply the following identity:
$
Phi(-x) = 1 - Phi(x)
$
== General normal distributions
The general family of normal distributions is obtained by linear or affine
transformations of $Z$. Let $mu$ be real, and $sigma > 0$, then
$
X = sigma Z + mu
$
is also a normally distributed random variable with parameters $(mu, sigma^2)$.
The CDF of $X$ in terms of $Phi(dot)$ can be expressed as
$
F_X (x) &= P(X <= x) \
&= P(sigma Z + mu <= x) \
&= P(Z <= (x - mu) / sigma) \
&= Phi((x-mu)/sigma)
$
Also,
$
f(x) = F'(x) = dif / (dif x) [Phi((x-u)/sigma)] = 1 / sigma phi((x-u)/sigma) = 1 / sqrt(2 pi sigma^2) e^(-((x-mu)^2) / (2sigma^2))
$
#definition[
Let $mu$ be real and $sigma > 0$. A random variable $X$ has the _normal distribution_ with mean $mu$ and variance $sigma^2$ if $X$ has density function
$
f(x) = 1 / sqrt(2 pi sigma^2) e^(-((x-mu)^2) / (2sigma^2))
$
on the real line. Abbreviate this by $X ~ N(mu, sigma^2)$.
]
#fact[
Let $X ~ N(mu, sigma^2)$ and $Y = a X + b$. Then
$
Y ~ N(a mu + b, a^2 sigma^2)
$
That is, $Y$ is normally distributed with parameters $(a mu + b, a^2 sigma^2)$.
In particular,
$
Z = (X - mu) / sigma ~ N(0,1)
$
is a standard normal variable.
]
= Lecture #datetime(day: 11, year: 2025, month: 2).display()
== Expectation