auto-update(nvim): 2025-02-12 13:22:06
This commit is contained in:
parent
52e2142177
commit
7c8ce35f66
1 changed files with 55 additions and 0 deletions
|
@ -1665,6 +1665,61 @@ $F_z(x)$, we use the special $phi(x)$ and $Phi(x)$.
|
|||
- use the standard normal probability table in the textbook
|
||||
]
|
||||
|
||||
To evaluate negative values, we can use the symmetry of the normal distribution
|
||||
to apply the following identity:
|
||||
|
||||
$
|
||||
Phi(-x) = 1 - Phi(x)
|
||||
$
|
||||
|
||||
== General normal distributions
|
||||
|
||||
The general family of normal distributions is obtained by linear or affine
|
||||
transformations of $Z$. Let $mu$ be real, and $sigma > 0$, then
|
||||
|
||||
$
|
||||
X = sigma Z + mu
|
||||
$
|
||||
is also a normally distributed random variable with parameters $(mu, sigma^2)$.
|
||||
The CDF of $X$ in terms of $Phi(dot)$ can be expressed as
|
||||
|
||||
$
|
||||
F_X (x) &= P(X <= x) \
|
||||
&= P(sigma Z + mu <= x) \
|
||||
&= P(Z <= (x - mu) / sigma) \
|
||||
&= Phi((x-mu)/sigma)
|
||||
$
|
||||
|
||||
Also,
|
||||
|
||||
$
|
||||
f(x) = F'(x) = dif / (dif x) [Phi((x-u)/sigma)] = 1 / sigma phi((x-u)/sigma) = 1 / sqrt(2 pi sigma^2) e^(-((x-mu)^2) / (2sigma^2))
|
||||
$
|
||||
|
||||
#definition[
|
||||
Let $mu$ be real and $sigma > 0$. A random variable $X$ has the _normal distribution_ with mean $mu$ and variance $sigma^2$ if $X$ has density function
|
||||
|
||||
$
|
||||
f(x) = 1 / sqrt(2 pi sigma^2) e^(-((x-mu)^2) / (2sigma^2))
|
||||
$
|
||||
|
||||
on the real line. Abbreviate this by $X ~ N(mu, sigma^2)$.
|
||||
]
|
||||
|
||||
#fact[
|
||||
Let $X ~ N(mu, sigma^2)$ and $Y = a X + b$. Then
|
||||
$
|
||||
Y ~ N(a mu + b, a^2 sigma^2)
|
||||
$
|
||||
|
||||
That is, $Y$ is normally distributed with parameters $(a mu + b, a^2 sigma^2)$.
|
||||
In particular,
|
||||
$
|
||||
Z = (X - mu) / sigma ~ N(0,1)
|
||||
$
|
||||
is a standard normal variable.
|
||||
]
|
||||
|
||||
= Lecture #datetime(day: 11, year: 2025, month: 2).display()
|
||||
|
||||
== Expectation
|
||||
|
|
Loading…
Reference in a new issue