alexandria/documents/by-course/math-6a/course-notes/main.typ

61 lines
1.2 KiB
Text

#import "./dvd.typ": *
#import "@preview/cetz:0.3.1"
#show: dvdtyp.with(
title: "Math 6A Course Notes",
author: "Youwen Wu",
date: "Winter 2025",
subtitle: [Taught by Nathan Scheley],
)
#outline()
= Lecture #datetime(day: 7, month: 1, year: 2025).display()
== Review of fundamental concepts
You can parameterize curves.
#example[Unit circle][
$
x = cos(t) \
y = sin(t)
$
]
For an implicit equation
$ y = f(t) $
Parameterize it by setting
$ x = t \ y = f(t) $
Parameterize a line passing through two points $arrow(p)_1$ and $arrow(p)_2$ by
$ arrow(c)(t) = arrow(p)_1 + t (arrow(p)_2 - arrow(p)_1) $
Take the derivative of each component to find the velocity vector. The
magnitude of velocity is speed.
#example[
$
arrow(c)(t) = <5t, sin(t)> \
arrow(v)(t) = <5, cos(t)>
$
]
== Polar coordinates
Write a set of Cartesian coordinates in $RR^2$ as polar coordinates instead, by
a distance from origin $r$ and angle about the origin $theta$.
$ (x,y) -> (r, theta) $
= Lecture #datetime(day: 9, month: 1, year: 2025).display()
== Vectors
A dot product of two vectors is a generalization of the sense of size for a
point or vector.
#example[
How far is the point $x_1, x_2, x_3$ from the origin? \
Answer: $x_1^2 + x_2^2 + x_3^2$
]