auto-update(nvim): 2025-01-18 00:23:11
Some checks are pending
Deploy Quartz site to GitHub Pages using Nix / build (push) Waiting to run
Deploy Quartz site to GitHub Pages using Nix / deploy (push) Blocked by required conditions

This commit is contained in:
Youwen Wu 2025-01-18 00:23:11 -08:00
parent ed5a3e5215
commit bd81364613
Signed by: youwen5
GPG key ID: 865658ED1FE61EC3
2 changed files with 45 additions and 345 deletions

View file

@ -1,341 +0,0 @@
#import "@preview/ctheorems:1.1.3": *
#import "@preview/showybox:2.0.3": showybox
#let colors = (
rgb("#9E9E9E"),
rgb("#F44336"),
rgb("#E91E63"),
rgb("#9C27B0"),
rgb("#673AB7"),
rgb("#3F51B5"),
rgb("#2196F3"),
rgb("#03A9F4"),
rgb("#00BCD4"),
rgb("#009688"),
rgb("#4CAF50"),
rgb("#8BC34A"),
rgb("#CDDC39"),
rgb("#FFEB3B"),
rgb("#FFC107"),
rgb("#FF9800"),
rgb("#FF5722"),
rgb("#795548"),
rgb("#9E9E9E"),
)
#let dvdtyp(
title: "",
subtitle: "",
author: "",
abstract: none,
bibliography: none,
paper-size: "a4",
date: "today",
body,
) = {
set document(title: title, author: author)
set std.bibliography(style: "springer-mathphys", title: [References])
show: thmrules
set page(
numbering: "1",
number-align: center,
header: locate(loc => {
if loc.page() == 1 {
return
}
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
font: "New Computer Modern",
)[
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
#h(1fr)
*#title*
]]
}),
paper: paper-size,
// The margins depend on the paper size.
margin: (
left: (86pt / 216mm) * 100%,
right: (86pt / 216mm) * 100%,
),
)
set heading(numbering: "1.")
show heading: it => {
set text(font: "Libertinus Serif")
block[
#if it.numbering != none {
text(rgb("#2196F3"), weight: 500)[#sym.section]
text(rgb("#2196F3"))[#counter(heading).display() ]
}
#it.body
#v(0.5em)
]
}
set text(font: "New Computer Modern", lang: "en")
show math.equation: set text(weight: 400)
// Title row.
align(center)[
#set text(font: "Libertinus Serif")
#block(text(weight: 700, 26pt, title))
#if subtitle != none [#text(12pt, weight: 500)[#(
subtitle
)]]
#if author != none [#text(16pt)[#smallcaps(author)]]
#v(1.2em, weak: true)
#if date == "today" {
datetime.today().display("[day] [month repr:long] [year]")
} else {
date
}
]
if abstract != none [
#v(2.2em)
#set text(font: "Libertinus Serif")
#pad(x: 14%, abstract)
#v(1em)
]
set outline(fill: repeat[~.], indent: 1em)
show outline: set heading(numbering: none)
show outline: set par(first-line-indent: 0em)
show outline.entry.where(level: 1): it => {
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
}
show outline.entry: it => {
h(1em)
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
}
// Main body.
set par(
justify: true,
spacing: 0.65em,
first-line-indent: 2em,
)
body
// Display the bibliography, if any is given.
if bibliography != none {
show std.bibliography: set text(footnote-size)
show std.bibliography: set block(above: 11pt)
show std.bibliography: pad.with(x: 0.5pt)
bibliography
}
}
#let thmtitle(t, color: rgb("#000000")) = {
return text(
font: "Libertinus Serif",
weight: "semibold",
fill: color,
)[#t]
}
#let thmname(t, color: rgb("#000000")) = {
return text(font: "Libertinus Serif", fill: color)[(#t)]
}
#let thmtext(t, color: rgb("#000000")) = {
let a = t.children
if (a.at(0) == [ ]) {
a.remove(0)
}
t = a.join()
return text(font: "New Computer Modern", fill: color)[#t]
}
#let thmbase(
identifier,
head,
..blockargs,
supplement: auto,
padding: (top: 0.5em, bottom: 0.5em),
namefmt: x => [(#x)],
titlefmt: strong,
bodyfmt: x => x,
separator: [. \ ],
base: "heading",
base_level: none,
) = {
if supplement == auto {
supplement = head
}
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
if not name == none {
name = [ #namefmt(name)]
} else {
name = []
}
if title == auto {
title = head
}
if not number == none {
title += " " + number
}
title = titlefmt(title)
body = [#pad(top: 2pt, bodyfmt(body))]
pad(
..padding,
showybox(
width: 100%,
radius: 0.3em,
breakable: true,
padding: (top: 0em, bottom: 0em),
..blockargs.named(),
..blockargs_individual.named(),
[
#title#name#titlefmt(separator)#body
],
),
)
}
let auxthmenv = thmenv(
identifier,
base,
base_level,
boxfmt,
).with(supplement: supplement)
return auxthmenv.with(numbering: "1.1")
}
#let styled-thmbase = thmbase.with(
titlefmt: thmtitle,
namefmt: thmname,
bodyfmt: thmtext,
)
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
titlefmt: thmtitle.with(color: color.darken(30%)),
bodyfmt: thmtext.with(color: color.darken(70%)),
namefmt: thmname.with(color: color.darken(30%)),
frame: (
body-color: color.lighten(92%),
border-color: color.darken(10%),
thickness: 1.5pt,
inset: 1.2em,
radius: 0.3em,
),
..builderargs,
)
#let builder-thmline(
color: rgb("#000000"),
..builderargs,
) = styled-thmbase.with(
titlefmt: thmtitle.with(color: color.darken(30%)),
bodyfmt: thmtext.with(color: color.darken(70%)),
namefmt: thmname.with(color: color.darken(30%)),
frame: (
body-color: color.lighten(92%),
border-color: color.darken(10%),
thickness: (left: 2pt),
inset: 1.2em,
radius: 0em,
),
..builderargs,
)
#let problem-style = builder-thmbox(
color: colors.at(11),
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
)
#let exercise = problem-style("item", "Exercise")
#let problem = exercise
#let theorem-style = builder-thmbox(
color: colors.at(6),
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
)
#let example-style = builder-thmbox(
color: colors.at(16),
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
)
#let theorem = theorem-style("item", "Theorem")
#let lemma = theorem-style("item", "Lemma")
#let corollary = theorem-style("item", "Corollary")
#let definition-style = builder-thmline(color: colors.at(8))
// #let definition = definition-style("definition", "Definition")
#let proposition = definition-style("item", "Proposition")
#let remark = definition-style("item", "Remark")
#let observation = definition-style("item", "Observation")
// #let example-style = builder-thmline(color: colors.at(16))
#let example = example-style("item", "Example")
#let proof(body, name: none) = {
v(0.5em)
[_Proof_]
if name != none {
[ #thmname[#name]]
}
[.]
body
h(1fr)
// Add a word-joiner so that the proof square and the last word before the
// 1fr spacing are kept together.
sym.wj
// Add a non-breaking space to ensure a minimum amount of space between the
// text and the proof square.
sym.space.nobreak
$square.stroked$
v(0.5em)
}
#let fact = thmplain(
"item",
"Fact",
titlefmt: content => [*#content.*],
namefmt: content => [_(#content)._],
separator: [],
inset: 0pt,
padding: (bottom: 0.5em, top: 0.5em),
)
#let abuse = thmplain(
"item",
"Abuse of Notation",
titlefmt: content => [*#content.*],
namefmt: content => [_(#content)._],
separator: [],
inset: 0pt,
padding: (bottom: 0.5em, top: 0.5em),
)
#let definition = thmplain(
"item",
"Definition",
titlefmt: content => [*#content.*],
namefmt: content => [_(#content)._],
separator: [],
inset: 0pt,
padding: (bottom: 0.5em, top: 0.5em),
)

View file

@ -1,6 +1,6 @@
#import "./dvd.typ": *
#import "@youwen/zen:0.1.0": *
#show: dvdtyp.with(
#show: zen.with(
title: "Math 8 Course Notes",
author: "Youwen Wu",
date: "Winter 2025",
@ -308,13 +308,31 @@ $ P => Q and Q => P $
#theorem("Fundamental Theorem of Arithmetic")[
$forall x in ZZ, x > 1$, $x$ can be written as a product of prime factors.
Additionally, these prime factors are unique, i.e. there is only one set of
prime factors that uniquely factorizes $x$. Hence it is sometimes called the
_unique factorization theorem_ or the _prime factorization theorem_.
]
#example[
Assume $p$ is prime. Then $p | b$ iff $p | b^2$.
#proof[
First let us show $p | b => p | b^2$. We know $b$ can be written as the
product of the prime $p$ and some other integer $n$.
$ b = p n $
Then
$ b^2 = p^2 n^2 $
which implies $p$ is a factor of and divides $b^2$. So,
$ p | b => p | b^2 $
Now let us show the converse, i.e. $p | b^2 => p | b$.
By the unique factorization theorem, $b^2$ can be written as a unique
product of primes, one of which is $p$. But we also know $b^2 = b dot b$
and so at least one $b$ must have a prime factor $p$. But $b$ has unique
prime factors (again by the same theorem) so $b$ always has a prime factor
$p$. Hence,
$ p | b^2 => p | b $
]
]
@ -391,9 +409,14 @@ non-perfect square is irrational.
Show that $sqrt(15)$ is irrational.
]
#exercise("Euclid's Theorem")[
#problem("Euclid's Theorem")[
Show that there are an infinite amount of prime numbers.
]
]<euclid>
#problem[
Show that in general, given any integer $n$ that is not a perfect square,
i.e. $ exists.not a in ZZ, n = a^2 $ $sqrt(n)$ is irrational.
]<perfectsquare>
== Proofs involving quantifiers
@ -443,3 +466,21 @@ $ exists x in U, P(x) $
Prove that between any two rational numbers $x$ and $y$ there is another
rational number $z$.
]
== Solutions
Solutions to selected problems and exercises.
#linebreak()
*@euclid.* We begin by considering primes $p_1, p_2, ..., p_n$. Let $P = p_1 dot p_2 dot ... dot p_n$. Then let $q = P + 1$.
Then if $q$ is prime, we have an additional prime not in the original list.
Otherwise, $q$ is not prime and we have a unique prime factorization of $q$.
Without loss of generality, take one such prime to be $p_k$. $p_k$ cannot be in
the original list $p_1, p_2, ..., p_n$.
If $p_k$ were in the original list, then since $P$ is divisible by $p_k$, and $P
+ 1$ is also divisible by $p_k$, 1 must be divisible by $p_k$ which is
impossible. So $p_k$ is a new prime.