auto-update(nvim): 2025-01-06 18:28:44
This commit is contained in:
parent
560e8fdcb9
commit
c1ad1cdec0
3 changed files with 61 additions and 21 deletions
|
@ -1,5 +1,5 @@
|
||||||
#import "@preview/ctheorems:1.1.2": *
|
#import "@preview/ctheorems:1.1.3": *
|
||||||
#import "@preview/showybox:2.0.1": showybox
|
#import "@preview/showybox:2.0.3": showybox
|
||||||
|
|
||||||
#let colors = (
|
#let colors = (
|
||||||
rgb("#9E9E9E"),
|
rgb("#9E9E9E"),
|
||||||
|
@ -257,27 +257,33 @@
|
||||||
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
||||||
)
|
)
|
||||||
|
|
||||||
#let problem = problem-style("problem", "Problem")
|
#let exercise = problem-style("item", "Exercise")
|
||||||
|
#let problem = exercise
|
||||||
|
|
||||||
#let theorem-style = builder-thmbox(
|
#let theorem-style = builder-thmbox(
|
||||||
color: colors.at(6),
|
color: colors.at(6),
|
||||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
||||||
)
|
)
|
||||||
|
|
||||||
#let theorem = theorem-style("theorem", "Theorem")
|
#let example-style = builder-thmbox(
|
||||||
#let lemma = theorem-style("lemma", "Lemma")
|
color: colors.at(16),
|
||||||
#let corollary = theorem-style("corollary", "Corollary")
|
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
||||||
|
)
|
||||||
|
|
||||||
|
#let theorem = theorem-style("item", "Theorem")
|
||||||
|
#let lemma = theorem-style("item", "Lemma")
|
||||||
|
#let corollary = theorem-style("item", "Corollary")
|
||||||
|
|
||||||
#let definition-style = builder-thmline(color: colors.at(8))
|
#let definition-style = builder-thmline(color: colors.at(8))
|
||||||
|
|
||||||
#let definition = definition-style("definition", "Definition")
|
// #let definition = definition-style("definition", "Definition")
|
||||||
#let proposition = definition-style("proposition", "Proposition")
|
#let proposition = definition-style("item", "Proposition")
|
||||||
#let remark = definition-style("remark", "Remark")
|
#let remark = definition-style("item", "Remark")
|
||||||
#let observation = definition-style("observation", "Observation")
|
#let observation = definition-style("item", "Observation")
|
||||||
|
|
||||||
#let example-style = builder-thmline(color: colors.at(16))
|
// #let example-style = builder-thmline(color: colors.at(16))
|
||||||
|
|
||||||
#let example = example-style("example", "Example").with(numbering: none)
|
#let example = example-style("item", "Example").with(numbering: none)
|
||||||
|
|
||||||
#let proof(body, name: none) = {
|
#let proof(body, name: none) = {
|
||||||
thmtitle[Proof]
|
thmtitle[Proof]
|
||||||
|
@ -289,3 +295,26 @@
|
||||||
h(1fr)
|
h(1fr)
|
||||||
$square$
|
$square$
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#let fact = thmplain(
|
||||||
|
"item",
|
||||||
|
"Fact",
|
||||||
|
titlefmt: strong,
|
||||||
|
separator: ".",
|
||||||
|
|
||||||
|
inset: 0pt,
|
||||||
|
)
|
||||||
|
#let abuse = thmplain(
|
||||||
|
"item",
|
||||||
|
"Abuse of Notation",
|
||||||
|
titlefmt: strong,
|
||||||
|
separator: ".",
|
||||||
|
inset: 0pt,
|
||||||
|
)
|
||||||
|
#let definition = thmplain(
|
||||||
|
"item",
|
||||||
|
"Definition",
|
||||||
|
titlefmt: strong,
|
||||||
|
separator: ".",
|
||||||
|
inset: 0pt,
|
||||||
|
)
|
||||||
|
|
|
@ -62,7 +62,8 @@ Definitions barely worth considering. Included purely for posterity.
|
||||||
$x^2 + 6x + 8 = 0$
|
$x^2 + 6x + 8 = 0$
|
||||||
]
|
]
|
||||||
|
|
||||||
Propositions may be stated in the formalism of mathematics using connectives, as *propositional forms*.
|
Propositions may be stated in the formalism of mathematics using connectives,
|
||||||
|
as *propositional forms*.
|
||||||
|
|
||||||
#definition("Propositional forms")[
|
#definition("Propositional forms")[
|
||||||
Let $P$ and $Q$ be propositions. Then:
|
Let $P$ and $Q$ be propositions. Then:
|
||||||
|
|
|
@ -21,8 +21,14 @@
|
||||||
|
|
||||||
== Set theory for dummies
|
== Set theory for dummies
|
||||||
|
|
||||||
A terse introduction to elementary set theory and the basic operations upon
|
A terse introduction to elementary naive set theory and the basic operations
|
||||||
them.
|
upon them.
|
||||||
|
|
||||||
|
#remark[
|
||||||
|
Keep in mind that without $cal(Z F C)$ or another model of set theory that
|
||||||
|
resolves fundamental issues, our set theory is subject to paradoxes like
|
||||||
|
Russell's.
|
||||||
|
]
|
||||||
|
|
||||||
#definition[
|
#definition[
|
||||||
A Set is a collection of elements.
|
A Set is a collection of elements.
|
||||||
|
@ -51,7 +57,7 @@ With arbitrary sets $A$, $B$:
|
||||||
+ $a in.not A$ ($a$ is not a member of the set $A$)
|
+ $a in.not A$ ($a$ is not a member of the set $A$)
|
||||||
+ $A subset.eq B$ (Set theory: $A$ is a subset of $B$) (Stats: $A$ is a sample space in $B$)
|
+ $A subset.eq B$ (Set theory: $A$ is a subset of $B$) (Stats: $A$ is a sample space in $B$)
|
||||||
+ $A subset B$ (Proper subset: $A != B$)
|
+ $A subset B$ (Proper subset: $A != B$)
|
||||||
+ $A^c$ or $A'$ (read "complement of $A$")
|
+ $A^c$ or $A'$ (read "complement of $A$", and gives all the elements in the universal set not in $A$)
|
||||||
+ $A union B$ (Union of $A$ and $B$. Gives a set with both the elements of $A$ and $B$)
|
+ $A union B$ (Union of $A$ and $B$. Gives a set with both the elements of $A$ and $B$)
|
||||||
+ $A sect B$ (Intersection of $A$ and $B$. Gives a set consisting of the elements in *both* $A$ and $B$)
|
+ $A sect B$ (Intersection of $A$ and $B$. Gives a set consisting of the elements in *both* $A$ and $B$)
|
||||||
+ $A \\ B$ (Set difference. The set of all elements of $A$ that are not also in $B$)
|
+ $A \\ B$ (Set difference. The set of all elements of $A$ that are not also in $B$)
|
||||||
|
@ -64,12 +70,19 @@ We can also write a few of these operations precisely as set comprehensions.
|
||||||
+ $A sect B = {x | x in A and x in B}$ (here $and$ is the logical AND)
|
+ $A sect B = {x | x in A and x in B}$ (here $and$ is the logical AND)
|
||||||
+ $A \\ B = {a | a in A and a in.not B}$
|
+ $A \\ B = {a | a in A and a in.not B}$
|
||||||
+ $A times B = {(a,b) | forall a in A, forall b in B}$
|
+ $A times B = {(a,b) | forall a in A, forall b in B}$
|
||||||
|
+ $A' = A sect Omega$, where $Omega$ is the _universal set_.
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
The universal set $Omega$ is the set of all objects in a given set
|
||||||
|
theoretical universe.
|
||||||
|
]
|
||||||
|
|
||||||
Take a moment and convince yourself that these definitions are equivalent to
|
Take a moment and convince yourself that these definitions are equivalent to
|
||||||
the previous ones.
|
the previous ones.
|
||||||
|
|
||||||
#example[The real plane][
|
#example[The real plane][
|
||||||
The real plane $RR^2$ can be defined as a Cartesian product of $RR$ with itself.
|
The real plane $RR^2$ can be defined as a Cartesian product of $RR$ with
|
||||||
|
itself.
|
||||||
|
|
||||||
$ RR^2 = RR times RR $
|
$ RR^2 = RR times RR $
|
||||||
]
|
]
|
||||||
|
@ -118,10 +131,7 @@ When a set is uncountably infinite, its cardinality is greater than $aleph_0$.
|
||||||
+ The real numbers in the interval $[0,1]$.
|
+ The real numbers in the interval $[0,1]$.
|
||||||
]
|
]
|
||||||
|
|
||||||
#remark[Bijection][
|
#fact[
|
||||||
If a set is countably infinite, then it has a bijection with $ZZ$. This means
|
If a set is countably infinite, then it has a bijection with $ZZ$. This means
|
||||||
every set with cardinality $aleph_0$ has a bijection to $ZZ$.
|
every set with cardinality $aleph_0$ has a bijection to $ZZ$.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue