auto-update(nvim): 2025-01-13 02:08:30
This commit is contained in:
parent
66554ba4e0
commit
d0160fce8c
1 changed files with 186 additions and 27 deletions
|
@ -13,6 +13,8 @@
|
|||
),
|
||||
)
|
||||
|
||||
#set par(first-line-indent: 0pt, spacing: 1em)
|
||||
|
||||
Problems:
|
||||
|
||||
1.1: \#1ceij, 2c, 3cdeghjL, 4cdefh, 6, 7cg, 10ce, 11bei, 12a, 13
|
||||
|
@ -27,16 +29,19 @@ Problems:
|
|||
|
||||
True.
|
||||
] \
|
||||
|
||||
e. #[
|
||||
Either $pi$ is rational and $17$ is a prime, or $7 < 13$ and $81$ is a perfect square.
|
||||
|
||||
True.
|
||||
] \
|
||||
|
||||
i. #[
|
||||
It is not the case that $39$ is prime, or that 64 is a power of 2.
|
||||
|
||||
False.
|
||||
] \
|
||||
|
||||
j. #[
|
||||
There are more than three false statements in this book, and this statement is one of them.
|
||||
|
||||
|
@ -160,35 +165,9 @@ Problems:
|
|||
6. \
|
||||
a. $not P and not Q$, $not (P and not Q)$ are not equivalent because we can choose $P$ and $Q$ to both be true which gives false for proposition 1 and true for proposition 2. \
|
||||
b. $(not P) or (not Q), not (P or not Q)$ are not equivalent because we can choose $P$ to be true and $Q$ to be false, and proposition 1 is true while proposition 2 is false. \
|
||||
c. $(P and Q) or R$, $P and (Q or R)$ are not equivalent, by a truth table.
|
||||
c. $(P and Q) or R$, $P and (Q or R)$ are not equivalent
|
||||
|
||||
#proof[
|
||||
Direct computation, by a truth table. Hopefully this suffices to show the absurdity of computing nontrivial boolean results by truth table.
|
||||
#table(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr, 1fr, 1fr, 2fr, 2fr),
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$R$],
|
||||
[$P and Q$],
|
||||
[$Q or R$],
|
||||
[$(P and Q) or R$],
|
||||
[$P and (Q or R)$],
|
||||
|
||||
[T], [T], [T], [T], [T], [T], [T],
|
||||
[T], [F], [T], [F], [T], [T], [T],
|
||||
[T], [T], [F], [F], [T], [T], [T],
|
||||
[T], [F], [F], [F], [F], [F], [F],
|
||||
[F], [T], [T], [F], [T], [T], [F],
|
||||
[F], [F], [T], [], [], [], [],
|
||||
[F], [T], [F], [], [], [], [],
|
||||
[F], [F], [F], [], [], [], [],
|
||||
)
|
||||
|
||||
We need not complete the table as we have already identified a contradiction for when $P$ and $Q$ are false, $R$ true.
|
||||
]
|
||||
|
||||
#remark(numbering: none)[
|
||||
We can also show this result directly by
|
||||
|
||||
$
|
||||
|
@ -358,3 +337,183 @@ $ not (not P) or (not Q and not S) $
|
|||
]
|
||||
|
||||
= Exercises
|
||||
|
||||
1. \
|
||||
b. If #math.underbrace("the moon is made of cheese", "antedecent"), then #math.underbrace("triangles have four sides", "consequent").
|
||||
|
||||
d. #math.underbrace([The differentiability of $f$], "antedecent") is sufficient for #math.underbrace[$f$ to be continuous][consequent].
|
||||
|
||||
2. \
|
||||
b.
|
||||
|
||||
Converse: If triangles have four sides, then squares have three sides.
|
||||
|
||||
Contrapositive: If triangles don't have four sides, then squares don't have three sides.
|
||||
|
||||
#linebreak()
|
||||
|
||||
d.
|
||||
|
||||
Converse: The continuity of $f$ is sufficient for $f$ to be differentiable.
|
||||
|
||||
Contrapositive: If $f$ is not continuous, then $f$ is not differentiable.
|
||||
|
||||
3. \
|
||||
a. $Q$ must be true.
|
||||
|
||||
#linebreak()
|
||||
|
||||
b. $Q$ must be true.
|
||||
|
||||
#linebreak()
|
||||
|
||||
c. $Q$ is false.
|
||||
|
||||
#linebreak()
|
||||
|
||||
d. $Q$ is false.
|
||||
|
||||
#linebreak()
|
||||
|
||||
e. $Q$ is true.
|
||||
|
||||
5. \
|
||||
c. True.
|
||||
|
||||
#linebreak()
|
||||
|
||||
f. True.
|
||||
|
||||
#linebreak()
|
||||
|
||||
g. True.
|
||||
|
||||
6. \
|
||||
b. False.
|
||||
|
||||
#linebreak()
|
||||
|
||||
c. False
|
||||
|
||||
#linebreak()
|
||||
|
||||
g. False.
|
||||
|
||||
#linebreak()
|
||||
|
||||
7. \
|
||||
b.
|
||||
|
||||
#table(
|
||||
columns: 6,
|
||||
align: center,
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$not P$],
|
||||
[$not P => Q$],
|
||||
[$Q <=> P$],
|
||||
[$(not P => Q) or (Q <=> P)$],
|
||||
|
||||
[T], [T], [F], [T], [T], [T],
|
||||
[F], [T], [T], [T], [F], [T],
|
||||
[T], [F], [F], [T], [F], [T],
|
||||
[F], [F], [T], [F], [T], [T],
|
||||
)
|
||||
|
||||
#linebreak()
|
||||
|
||||
e.
|
||||
#table(
|
||||
columns: 5,
|
||||
align: center,
|
||||
[$P$], [$Q$], [$not Q$], [$Q <=> P$], [$not Q => (Q <=> P)$],
|
||||
[$T$], [$T$], [F], [T], [T],
|
||||
[$F$], [$T$], [F], [F], [T],
|
||||
[$T$], [$F$], [T], [F], [F],
|
||||
[$F$], [$F$], [T], [T], [T],
|
||||
)
|
||||
|
||||
10. \
|
||||
b. If $n$ is prime, then $n = 2$ or $n$ is odd.
|
||||
|
||||
$
|
||||
n "is prime" => (n=2) or (n mod 2 = 1)
|
||||
$
|
||||
|
||||
f.
|
||||
|
||||
$
|
||||
2 < n - 6 => 2n < 4 or n > 4
|
||||
$
|
||||
|
||||
g.
|
||||
|
||||
$
|
||||
6 >= n - 3 <=> n > 4 or n > 10
|
||||
$
|
||||
|
||||
12. \
|
||||
b.
|
||||
|
||||
#table(
|
||||
columns: 9,
|
||||
align: center,
|
||||
[$P$],
|
||||
[$Q$],
|
||||
[$R$],
|
||||
[$not R$],
|
||||
[$not Q$],
|
||||
[$P and Q$],
|
||||
[$P and not R$],
|
||||
[$(P and Q) => R$],
|
||||
[$(P and not R) => not Q$],
|
||||
|
||||
[T], [T], [T], [F], [F], [T], [F], [T], [T],
|
||||
[T], [F], [T], [F], [T], [F], [F], [T], [T],
|
||||
[T], [T], [F], [T], [F], [T], [T], [F], [F],
|
||||
[T], [F], [F], [T], [T], [F], [T], [T], [T],
|
||||
[F], [T], [T], [F], [F], [F], [F], [T], [T],
|
||||
[F], [F], [T], [F], [T], [F], [F], [T], [T],
|
||||
[F], [T], [F], [T], [F], [F], [F], [T], [T],
|
||||
[F], [F], [F], [T], [T], [F], [F], [T], [T],
|
||||
)
|
||||
|
||||
So they are equivalent.
|
||||
|
||||
#linebreak()
|
||||
|
||||
c.
|
||||
|
||||
#proof[
|
||||
$
|
||||
P => (Q and R) &<=> not (Q and R) => not P &&("contrapositive") \
|
||||
not (Q and R) => not P &<=> (not Q or not R) => not P space &&("DeMorgan's") \
|
||||
$
|
||||
]
|
||||
|
||||
13. \
|
||||
a. Continuity implies differentiability.
|
||||
|
||||
#linebreak()
|
||||
|
||||
b. Differentiability implies continuity.
|
||||
|
||||
#linebreak()
|
||||
|
||||
c. It is not possible.
|
||||
|
||||
#linebreak()
|
||||
|
||||
d. $P => Q$, where $P$ is true and $Q$ is true.
|
||||
|
||||
16. \
|
||||
c. Contradiction.
|
||||
|
||||
#linebreak()
|
||||
|
||||
d. Neither. Statement is equivalent to $P => Q$.
|
||||
|
||||
#linebreak()
|
||||
|
||||
e. Tautology. $P and (Q or not Q)$ is independent of $Q$ so this reduces to
|
||||
$P <=> P$.
|
||||
|
|
Loading…
Reference in a new issue