auto-update(nvim): 2025-01-13 02:08:30

This commit is contained in:
Youwen Wu 2025-01-13 02:08:30 -08:00
parent 66554ba4e0
commit d0160fce8c
Signed by: youwen5
GPG key ID: 865658ED1FE61EC3

View file

@ -13,6 +13,8 @@
),
)
#set par(first-line-indent: 0pt, spacing: 1em)
Problems:
1.1: \#1ceij, 2c, 3cdeghjL, 4cdefh, 6, 7cg, 10ce, 11bei, 12a, 13
@ -27,16 +29,19 @@ Problems:
True.
] \
e. #[
Either $pi$ is rational and $17$ is a prime, or $7 < 13$ and $81$ is a perfect square.
True.
] \
i. #[
It is not the case that $39$ is prime, or that 64 is a power of 2.
False.
] \
j. #[
There are more than three false statements in this book, and this statement is one of them.
@ -160,35 +165,9 @@ Problems:
6. \
a. $not P and not Q$, $not (P and not Q)$ are not equivalent because we can choose $P$ and $Q$ to both be true which gives false for proposition 1 and true for proposition 2. \
b. $(not P) or (not Q), not (P or not Q)$ are not equivalent because we can choose $P$ to be true and $Q$ to be false, and proposition 1 is true while proposition 2 is false. \
c. $(P and Q) or R$, $P and (Q or R)$ are not equivalent, by a truth table.
c. $(P and Q) or R$, $P and (Q or R)$ are not equivalent
#proof[
Direct computation, by a truth table. Hopefully this suffices to show the absurdity of computing nontrivial boolean results by truth table.
#table(
align: center,
columns: (1fr, 1fr, 1fr, 1fr, 1fr, 2fr, 2fr),
[$P$],
[$Q$],
[$R$],
[$P and Q$],
[$Q or R$],
[$(P and Q) or R$],
[$P and (Q or R)$],
[T], [T], [T], [T], [T], [T], [T],
[T], [F], [T], [F], [T], [T], [T],
[T], [T], [F], [F], [T], [T], [T],
[T], [F], [F], [F], [F], [F], [F],
[F], [T], [T], [F], [T], [T], [F],
[F], [F], [T], [], [], [], [],
[F], [T], [F], [], [], [], [],
[F], [F], [F], [], [], [], [],
)
We need not complete the table as we have already identified a contradiction for when $P$ and $Q$ are false, $R$ true.
]
#remark(numbering: none)[
We can also show this result directly by
$
@ -358,3 +337,183 @@ $ not (not P) or (not Q and not S) $
]
= Exercises
1. \
b. If #math.underbrace("the moon is made of cheese", "antedecent"), then #math.underbrace("triangles have four sides", "consequent").
d. #math.underbrace([The differentiability of $f$], "antedecent") is sufficient for #math.underbrace[$f$ to be continuous][consequent].
2. \
b.
Converse: If triangles have four sides, then squares have three sides.
Contrapositive: If triangles don't have four sides, then squares don't have three sides.
#linebreak()
d.
Converse: The continuity of $f$ is sufficient for $f$ to be differentiable.
Contrapositive: If $f$ is not continuous, then $f$ is not differentiable.
3. \
a. $Q$ must be true.
#linebreak()
b. $Q$ must be true.
#linebreak()
c. $Q$ is false.
#linebreak()
d. $Q$ is false.
#linebreak()
e. $Q$ is true.
5. \
c. True.
#linebreak()
f. True.
#linebreak()
g. True.
6. \
b. False.
#linebreak()
c. False
#linebreak()
g. False.
#linebreak()
7. \
b.
#table(
columns: 6,
align: center,
[$P$],
[$Q$],
[$not P$],
[$not P => Q$],
[$Q <=> P$],
[$(not P => Q) or (Q <=> P)$],
[T], [T], [F], [T], [T], [T],
[F], [T], [T], [T], [F], [T],
[T], [F], [F], [T], [F], [T],
[F], [F], [T], [F], [T], [T],
)
#linebreak()
e.
#table(
columns: 5,
align: center,
[$P$], [$Q$], [$not Q$], [$Q <=> P$], [$not Q => (Q <=> P)$],
[$T$], [$T$], [F], [T], [T],
[$F$], [$T$], [F], [F], [T],
[$T$], [$F$], [T], [F], [F],
[$F$], [$F$], [T], [T], [T],
)
10. \
b. If $n$ is prime, then $n = 2$ or $n$ is odd.
$
n "is prime" => (n=2) or (n mod 2 = 1)
$
f.
$
2 < n - 6 => 2n < 4 or n > 4
$
g.
$
6 >= n - 3 <=> n > 4 or n > 10
$
12. \
b.
#table(
columns: 9,
align: center,
[$P$],
[$Q$],
[$R$],
[$not R$],
[$not Q$],
[$P and Q$],
[$P and not R$],
[$(P and Q) => R$],
[$(P and not R) => not Q$],
[T], [T], [T], [F], [F], [T], [F], [T], [T],
[T], [F], [T], [F], [T], [F], [F], [T], [T],
[T], [T], [F], [T], [F], [T], [T], [F], [F],
[T], [F], [F], [T], [T], [F], [T], [T], [T],
[F], [T], [T], [F], [F], [F], [F], [T], [T],
[F], [F], [T], [F], [T], [F], [F], [T], [T],
[F], [T], [F], [T], [F], [F], [F], [T], [T],
[F], [F], [F], [T], [T], [F], [F], [T], [T],
)
So they are equivalent.
#linebreak()
c.
#proof[
$
P => (Q and R) &<=> not (Q and R) => not P &&("contrapositive") \
not (Q and R) => not P &<=> (not Q or not R) => not P space &&("DeMorgan's") \
$
]
13. \
a. Continuity implies differentiability.
#linebreak()
b. Differentiability implies continuity.
#linebreak()
c. It is not possible.
#linebreak()
d. $P => Q$, where $P$ is true and $Q$ is true.
16. \
c. Contradiction.
#linebreak()
d. Neither. Statement is equivalent to $P => Q$.
#linebreak()
e. Tautology. $P and (Q or not Q)$ is independent of $Q$ so this reduces to
$P <=> P$.