auto-update(nvim): 2025-02-05 01:15:42
This commit is contained in:
parent
b329bd3a23
commit
dc49fba1f8
2 changed files with 256 additions and 341 deletions
|
@ -1,341 +0,0 @@
|
||||||
#import "@preview/ctheorems:1.1.3": *
|
|
||||||
#import "@preview/showybox:2.0.3": showybox
|
|
||||||
|
|
||||||
#let colors = (
|
|
||||||
rgb("#9E9E9E"),
|
|
||||||
rgb("#F44336"),
|
|
||||||
rgb("#E91E63"),
|
|
||||||
rgb("#9C27B0"),
|
|
||||||
rgb("#673AB7"),
|
|
||||||
rgb("#3F51B5"),
|
|
||||||
rgb("#2196F3"),
|
|
||||||
rgb("#03A9F4"),
|
|
||||||
rgb("#00BCD4"),
|
|
||||||
rgb("#009688"),
|
|
||||||
rgb("#4CAF50"),
|
|
||||||
rgb("#8BC34A"),
|
|
||||||
rgb("#CDDC39"),
|
|
||||||
rgb("#FFEB3B"),
|
|
||||||
rgb("#FFC107"),
|
|
||||||
rgb("#FF9800"),
|
|
||||||
rgb("#FF5722"),
|
|
||||||
rgb("#795548"),
|
|
||||||
rgb("#9E9E9E"),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let dvdtyp(
|
|
||||||
title: "",
|
|
||||||
subtitle: "",
|
|
||||||
author: "",
|
|
||||||
abstract: none,
|
|
||||||
bibliography: none,
|
|
||||||
paper-size: "a4",
|
|
||||||
date: "today",
|
|
||||||
body,
|
|
||||||
) = {
|
|
||||||
set document(title: title, author: author)
|
|
||||||
|
|
||||||
set std.bibliography(style: "springer-mathphys", title: [References])
|
|
||||||
|
|
||||||
show: thmrules
|
|
||||||
|
|
||||||
set page(
|
|
||||||
numbering: "1",
|
|
||||||
number-align: center,
|
|
||||||
header: locate(loc => {
|
|
||||||
if loc.page() == 1 {
|
|
||||||
return
|
|
||||||
}
|
|
||||||
box(stroke: (bottom: 0.7pt), inset: 0.4em)[#text(
|
|
||||||
font: "New Computer Modern",
|
|
||||||
)[
|
|
||||||
*#author* --- #datetime.today().display("[day] [month repr:long] [year]")
|
|
||||||
#h(1fr)
|
|
||||||
*#title*
|
|
||||||
]]
|
|
||||||
}),
|
|
||||||
paper: paper-size,
|
|
||||||
// The margins depend on the paper size.
|
|
||||||
margin: (
|
|
||||||
left: (86pt / 216mm) * 100%,
|
|
||||||
right: (86pt / 216mm) * 100%,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
set heading(numbering: "1.")
|
|
||||||
show heading: it => {
|
|
||||||
set text(font: "Libertinus Serif")
|
|
||||||
|
|
||||||
block[
|
|
||||||
#if it.numbering != none {
|
|
||||||
text(rgb("#2196F3"), weight: 500)[#sym.section]
|
|
||||||
|
|
||||||
text(rgb("#2196F3"))[#counter(heading).display() ]
|
|
||||||
}
|
|
||||||
#it.body
|
|
||||||
#v(0.5em)
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
set text(font: "New Computer Modern", lang: "en")
|
|
||||||
|
|
||||||
show math.equation: set text(weight: 400)
|
|
||||||
|
|
||||||
|
|
||||||
// Title row.
|
|
||||||
align(center)[
|
|
||||||
#set text(font: "Libertinus Serif")
|
|
||||||
#block(text(weight: 700, 26pt, title))
|
|
||||||
|
|
||||||
|
|
||||||
#if subtitle != none [#text(12pt, weight: 500)[#(
|
|
||||||
subtitle
|
|
||||||
)]]
|
|
||||||
|
|
||||||
#if author != none [#text(16pt)[#smallcaps(author)]]
|
|
||||||
#v(1.2em, weak: true)
|
|
||||||
|
|
||||||
#if date == "today" {
|
|
||||||
datetime.today().display("[day] [month repr:long] [year]")
|
|
||||||
} else {
|
|
||||||
date
|
|
||||||
}
|
|
||||||
|
|
||||||
]
|
|
||||||
|
|
||||||
if abstract != none [
|
|
||||||
#v(2.2em)
|
|
||||||
#set text(font: "Libertinus Serif")
|
|
||||||
#pad(x: 14%, abstract)
|
|
||||||
#v(1em)
|
|
||||||
]
|
|
||||||
|
|
||||||
set outline(fill: repeat[~.], indent: 1em)
|
|
||||||
|
|
||||||
show outline: set heading(numbering: none)
|
|
||||||
show outline: set par(first-line-indent: 0em)
|
|
||||||
|
|
||||||
show outline.entry.where(level: 1): it => {
|
|
||||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#strong[#it]]
|
|
||||||
}
|
|
||||||
show outline.entry: it => {
|
|
||||||
h(1em)
|
|
||||||
text(font: "Libertinus Serif", rgb("#2196F3"))[#it]
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// Main body.
|
|
||||||
set par(
|
|
||||||
justify: true,
|
|
||||||
spacing: 0.65em,
|
|
||||||
first-line-indent: 2em,
|
|
||||||
)
|
|
||||||
|
|
||||||
body
|
|
||||||
|
|
||||||
// Display the bibliography, if any is given.
|
|
||||||
if bibliography != none {
|
|
||||||
show std.bibliography: set text(footnote-size)
|
|
||||||
show std.bibliography: set block(above: 11pt)
|
|
||||||
show std.bibliography: pad.with(x: 0.5pt)
|
|
||||||
bibliography
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#let thmtitle(t, color: rgb("#000000")) = {
|
|
||||||
return text(
|
|
||||||
font: "Libertinus Serif",
|
|
||||||
weight: "semibold",
|
|
||||||
fill: color,
|
|
||||||
)[#t]
|
|
||||||
}
|
|
||||||
#let thmname(t, color: rgb("#000000")) = {
|
|
||||||
return text(font: "Libertinus Serif", fill: color)[(#t)]
|
|
||||||
}
|
|
||||||
|
|
||||||
#let thmtext(t, color: rgb("#000000")) = {
|
|
||||||
let a = t.children
|
|
||||||
if (a.at(0) == [ ]) {
|
|
||||||
a.remove(0)
|
|
||||||
}
|
|
||||||
t = a.join()
|
|
||||||
|
|
||||||
return text(font: "New Computer Modern", fill: color)[#t]
|
|
||||||
}
|
|
||||||
|
|
||||||
#let thmbase(
|
|
||||||
identifier,
|
|
||||||
head,
|
|
||||||
..blockargs,
|
|
||||||
supplement: auto,
|
|
||||||
padding: (top: 0.5em, bottom: 0.5em),
|
|
||||||
namefmt: x => [(#x)],
|
|
||||||
titlefmt: strong,
|
|
||||||
bodyfmt: x => x,
|
|
||||||
separator: [. \ ],
|
|
||||||
base: "heading",
|
|
||||||
base_level: none,
|
|
||||||
) = {
|
|
||||||
if supplement == auto {
|
|
||||||
supplement = head
|
|
||||||
}
|
|
||||||
let boxfmt(name, number, body, title: auto, ..blockargs_individual) = {
|
|
||||||
if not name == none {
|
|
||||||
name = [ #namefmt(name)]
|
|
||||||
} else {
|
|
||||||
name = []
|
|
||||||
}
|
|
||||||
if title == auto {
|
|
||||||
title = head
|
|
||||||
}
|
|
||||||
if not number == none {
|
|
||||||
title += " " + number
|
|
||||||
}
|
|
||||||
title = titlefmt(title)
|
|
||||||
body = [#pad(top: 2pt, bodyfmt(body))]
|
|
||||||
pad(
|
|
||||||
..padding,
|
|
||||||
showybox(
|
|
||||||
width: 100%,
|
|
||||||
radius: 0.3em,
|
|
||||||
breakable: true,
|
|
||||||
padding: (top: 0em, bottom: 0em),
|
|
||||||
..blockargs.named(),
|
|
||||||
..blockargs_individual.named(),
|
|
||||||
[
|
|
||||||
#title#name#titlefmt(separator)#body
|
|
||||||
],
|
|
||||||
),
|
|
||||||
)
|
|
||||||
}
|
|
||||||
|
|
||||||
let auxthmenv = thmenv(
|
|
||||||
identifier,
|
|
||||||
base,
|
|
||||||
base_level,
|
|
||||||
boxfmt,
|
|
||||||
).with(supplement: supplement)
|
|
||||||
|
|
||||||
return auxthmenv.with(numbering: "1.1")
|
|
||||||
}
|
|
||||||
|
|
||||||
#let styled-thmbase = thmbase.with(
|
|
||||||
titlefmt: thmtitle,
|
|
||||||
namefmt: thmname,
|
|
||||||
bodyfmt: thmtext,
|
|
||||||
)
|
|
||||||
|
|
||||||
#let builder-thmbox(color: rgb("#000000"), ..builderargs) = styled-thmbase.with(
|
|
||||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
|
||||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
|
||||||
namefmt: thmname.with(color: color.darken(30%)),
|
|
||||||
frame: (
|
|
||||||
body-color: color.lighten(92%),
|
|
||||||
border-color: color.darken(10%),
|
|
||||||
thickness: 1.5pt,
|
|
||||||
inset: 1.2em,
|
|
||||||
radius: 0.3em,
|
|
||||||
),
|
|
||||||
..builderargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
#let builder-thmline(
|
|
||||||
color: rgb("#000000"),
|
|
||||||
..builderargs,
|
|
||||||
) = styled-thmbase.with(
|
|
||||||
titlefmt: thmtitle.with(color: color.darken(30%)),
|
|
||||||
bodyfmt: thmtext.with(color: color.darken(70%)),
|
|
||||||
namefmt: thmname.with(color: color.darken(30%)),
|
|
||||||
frame: (
|
|
||||||
body-color: color.lighten(92%),
|
|
||||||
border-color: color.darken(10%),
|
|
||||||
thickness: (left: 2pt),
|
|
||||||
inset: 1.2em,
|
|
||||||
radius: 0em,
|
|
||||||
),
|
|
||||||
..builderargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
#let problem-style = builder-thmbox(
|
|
||||||
color: colors.at(11),
|
|
||||||
shadow: (offset: (x: 2pt, y: 2pt), color: luma(70%)),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let exercise = problem-style("item", "Exercise")
|
|
||||||
#let problem = exercise
|
|
||||||
|
|
||||||
#let theorem-style = builder-thmbox(
|
|
||||||
color: colors.at(6),
|
|
||||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let example-style = builder-thmbox(
|
|
||||||
color: colors.at(16),
|
|
||||||
shadow: (offset: (x: 3pt, y: 3pt), color: luma(70%)),
|
|
||||||
)
|
|
||||||
|
|
||||||
#let theorem = theorem-style("item", "Theorem")
|
|
||||||
#let lemma = theorem-style("item", "Lemma")
|
|
||||||
#let corollary = theorem-style("item", "Corollary")
|
|
||||||
|
|
||||||
#let definition-style = builder-thmline(color: colors.at(8))
|
|
||||||
|
|
||||||
// #let definition = definition-style("definition", "Definition")
|
|
||||||
#let proposition = definition-style("item", "Proposition")
|
|
||||||
#let remark = definition-style("item", "Remark")
|
|
||||||
#let observation = definition-style("item", "Observation")
|
|
||||||
|
|
||||||
// #let example-style = builder-thmline(color: colors.at(16))
|
|
||||||
|
|
||||||
#let example = example-style("item", "Example")
|
|
||||||
|
|
||||||
#let proof(body, name: none) = {
|
|
||||||
v(0.5em)
|
|
||||||
[_Proof_]
|
|
||||||
if name != none {
|
|
||||||
[ #thmname[#name]]
|
|
||||||
}
|
|
||||||
[.]
|
|
||||||
body
|
|
||||||
h(1fr)
|
|
||||||
|
|
||||||
// Add a word-joiner so that the proof square and the last word before the
|
|
||||||
// 1fr spacing are kept together.
|
|
||||||
sym.wj
|
|
||||||
|
|
||||||
// Add a non-breaking space to ensure a minimum amount of space between the
|
|
||||||
// text and the proof square.
|
|
||||||
sym.space.nobreak
|
|
||||||
|
|
||||||
$square.stroked$
|
|
||||||
v(0.5em)
|
|
||||||
}
|
|
||||||
|
|
||||||
#let fact = thmplain(
|
|
||||||
"item",
|
|
||||||
"Fact",
|
|
||||||
titlefmt: content => [*#content.*],
|
|
||||||
namefmt: content => [_(#content)._],
|
|
||||||
separator: [],
|
|
||||||
inset: 0pt,
|
|
||||||
padding: (bottom: 0.5em, top: 0.5em),
|
|
||||||
)
|
|
||||||
#let abuse = thmplain(
|
|
||||||
"item",
|
|
||||||
"Abuse of Notation",
|
|
||||||
titlefmt: content => [*#content.*],
|
|
||||||
namefmt: content => [_(#content)._],
|
|
||||||
separator: [],
|
|
||||||
inset: 0pt,
|
|
||||||
padding: (bottom: 0.5em, top: 0.5em),
|
|
||||||
)
|
|
||||||
#let definition = thmplain(
|
|
||||||
"item",
|
|
||||||
"Definition",
|
|
||||||
titlefmt: content => [*#content.*],
|
|
||||||
namefmt: content => [_(#content)._],
|
|
||||||
separator: [],
|
|
||||||
inset: 0pt,
|
|
||||||
padding: (bottom: 0.5em, top: 0.5em),
|
|
||||||
)
|
|
|
@ -530,3 +530,259 @@ We can find a few particular solutions to our ODE, but how can we find all of th
|
||||||
Now we have a system and we can solve it using standard linear algebra
|
Now we have a system and we can solve it using standard linear algebra
|
||||||
techniques.
|
techniques.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
= Principle of superposition, Wronskian complex roots
|
||||||
|
|
||||||
|
== Review
|
||||||
|
|
||||||
|
Recall:
|
||||||
|
|
||||||
|
Second order ODE:
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' = F(t,y,y')
|
||||||
|
$
|
||||||
|
|
||||||
|
Linear:
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' + p(t) y' + q(t) y = g(t)
|
||||||
|
$
|
||||||
|
|
||||||
|
Homogenous:
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' + p(t) y' + q(t) y = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
Constant coefficients: $a y'' + b y' + c y = 0$, with characteristic equation
|
||||||
|
|
||||||
|
$
|
||||||
|
a r^2 + b r + c = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
From this characteristic equation we determine either distinct real roots,
|
||||||
|
complex real roots, or repeated real roots. We already know what to do with
|
||||||
|
distinct real roots.
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' + p(t) y' + q(t) y = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
The linear combination
|
||||||
|
|
||||||
|
$
|
||||||
|
y(t) = c_1 y_1 (t) + c_2 y_2 (t)
|
||||||
|
$
|
||||||
|
|
||||||
|
is a solution for any constants $c_1, c_2$. The solutions from a vector space!
|
||||||
|
Key: equation is linear and homogenous.
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Consider the linear, homogenous equation
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' + 5y' + 6y = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
We have two solutions:
|
||||||
|
|
||||||
|
$
|
||||||
|
y_1 (t) e^(-2t) + c_2 e^(-3t)
|
||||||
|
$
|
||||||
|
|
||||||
|
is a general solution. Are these all the solutions?
|
||||||
|
]
|
||||||
|
|
||||||
|
== The Wronskian
|
||||||
|
|
||||||
|
Given any initial values
|
||||||
|
|
||||||
|
$
|
||||||
|
y(t_0) y_0, y' (t_0) = y'_0
|
||||||
|
$
|
||||||
|
|
||||||
|
Substitute in:
|
||||||
|
|
||||||
|
$
|
||||||
|
c_1 y_1(t_0) + c_2 y_2(t_0) = y_0 \
|
||||||
|
c_1 y'_1 (t_0) + c_2 y'_2 (t_0) = y'_0 \
|
||||||
|
$
|
||||||
|
|
||||||
|
We have a linear system for $c_1, c_2$:
|
||||||
|
|
||||||
|
$
|
||||||
|
mat(c_1 y_1(t_0), c_2 y_2(t_0); c_1 y'_1 (t_0), c_2 y'_2 (t_0)) vec(c_1, c_2) = vec(y_0, y'_0)
|
||||||
|
$
|
||||||
|
|
||||||
|
The linear system has a unique solution provided the determinant of the
|
||||||
|
coefficient matrix is nonzero:
|
||||||
|
|
||||||
|
$
|
||||||
|
mat(y_1(t_0), y_2(t_0); y'_1(t_0), y'_2(t_0)) != 0
|
||||||
|
$
|
||||||
|
|
||||||
|
$ W = y_1(t_0) y'_2(t_0) - y_2(t_0) y'_1(t_0) != 0 $
|
||||||
|
|
||||||
|
#definition[
|
||||||
|
This determinant $W$ is called the *Wronskian* of $y_1(t)$ and $y_2(t)$ at
|
||||||
|
the point $t_0$.
|
||||||
|
]
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
If $W != 0$ at some point $t_0$, then it is nonzero throughout the interval $I$ where the solution is defined.
|
||||||
|
]
|
||||||
|
|
||||||
|
To summarize our description of the solution space, if $y_1(t)$, $y_2(t)$ are two solutions of the linear homogenous ODE
|
||||||
|
|
||||||
|
$
|
||||||
|
y'' + p(t) y' + q(t) y = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
such that $W(y_1, y_2)$, then the constants $c_1$, $c_2$ can be uniquely determined so that
|
||||||
|
|
||||||
|
$
|
||||||
|
y(t) = c_1 y_1(t) + c_2 y_2 (t)
|
||||||
|
$
|
||||||
|
|
||||||
|
satisfies any initial condition
|
||||||
|
|
||||||
|
$
|
||||||
|
y(t_0) = y_0, y'(t_0) = y'_0
|
||||||
|
$
|
||||||
|
|
||||||
|
$y(t)$ is the general solution.
|
||||||
|
|
||||||
|
== Solution space with constant coefficients, distinct real roots
|
||||||
|
|
||||||
|
Consider the 2nd order homogenous linear diffeq with constant coefficients.
|
||||||
|
|
||||||
|
$
|
||||||
|
a y'' + b y ' + c y = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
Suppose the characteristic equation
|
||||||
|
|
||||||
|
$
|
||||||
|
a r^2 + b r + c = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
has a pair of *distinct real roots* $r_1$, $r_2$. Then we have a pair of solutions
|
||||||
|
|
||||||
|
$
|
||||||
|
y_1(t) = e^(r_1 t), y_2(t) = e^(r_2 t)
|
||||||
|
$
|
||||||
|
|
||||||
|
Question: is this a fundamental set of solutions?
|
||||||
|
|
||||||
|
Check Wronskian.
|
||||||
|
|
||||||
|
$
|
||||||
|
W = det mat(y_1(t_0), y_2(t_0); y'_1(t_0), y'_2(t_0)) = det mat(e^(r_1 t_0), e^(r_2 t_0); r_1 e^(r_1 t_0), r_2 e^(r_2 t_0)) = e^(r_1 t_0) e^(r_2 t_0) (r_2 - r_1) != 0
|
||||||
|
$
|
||||||
|
|
||||||
|
since $r_1 != r_2$.
|
||||||
|
|
||||||
|
The Wronskian of our two solutions is $!= 0$ so the general solution is indeed
|
||||||
|
|
||||||
|
$
|
||||||
|
y(t) = c_1 e^(r_1 t) + c_2 e^(r_2 t)
|
||||||
|
$
|
||||||
|
|
||||||
|
== 2nd order linear homogenous ODE, complex roots
|
||||||
|
|
||||||
|
As usual consider
|
||||||
|
$ a y'' + b y' + c y = 0 $
|
||||||
|
|
||||||
|
with characteristic equation
|
||||||
|
|
||||||
|
$
|
||||||
|
a r^2 + b r + c = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
If $b^2 - 4a c < 0$, then solutions are complex numbers:
|
||||||
|
|
||||||
|
$
|
||||||
|
r_1 = lambda + i_mu, r_2 = lambda - i_mu
|
||||||
|
$
|
||||||
|
|
||||||
|
with
|
||||||
|
|
||||||
|
$
|
||||||
|
lambda = -b / (2a), mu = sqrt(4 a c - b^2) / (2a) != 0
|
||||||
|
$
|
||||||
|
|
||||||
|
Complex solutions
|
||||||
|
|
||||||
|
$
|
||||||
|
z_1(t) = e^(r_1 t) = e^((lambda + i_mu) t) = e^(lambda t) e^(i_mu t), z_2(t) = e^(r_2 t)
|
||||||
|
$
|
||||||
|
|
||||||
|
What is $e^(i_mu t)$?
|
||||||
|
|
||||||
|
Euler's formula:
|
||||||
|
|
||||||
|
$
|
||||||
|
e^(i theta) = cos theta + i sin theta
|
||||||
|
$
|
||||||
|
|
||||||
|
Using Euler's formula we can write
|
||||||
|
|
||||||
|
$
|
||||||
|
z_1(t) = e^(r_1 t) = e^((lambda + i_mu) t) = e^(lambda t) e^(i_mu t) = e^(lambda t) [cos mu t + i sin mu t] \
|
||||||
|
z_2(t) = e^(r_2 t) = e^((lambda - i_mu) t) = e^(lambda t) e^(-i_mu t) = e^(lambda t) [cos mu t - i sin mu t]
|
||||||
|
$
|
||||||
|
|
||||||
|
Define
|
||||||
|
|
||||||
|
$
|
||||||
|
y_1(t) = 1 / 2 [z_1(t) + z_2(t)] = e^(lambda t) cos mu t, "real part of" z_1(t) \
|
||||||
|
y_2(t) = 1 / (2i) [z_1(t) - z_2(t)] = e^(lambda t) sin mu t, "imaginary part of" z_1(t) \
|
||||||
|
$
|
||||||
|
|
||||||
|
By the superposition principle, they are solutions. Are they a fundamental set
|
||||||
|
of solutions? Are they a basis for the solution space?
|
||||||
|
|
||||||
|
Check the Wronskian:
|
||||||
|
|
||||||
|
We see that it is nonzero, therefore, when $b^2 - 4 a c < 0$, the equation
|
||||||
|
|
||||||
|
$
|
||||||
|
a y'' + b y' + c y = 0
|
||||||
|
$
|
||||||
|
|
||||||
|
has two real solutions
|
||||||
|
|
||||||
|
$
|
||||||
|
y_1(t) = e^(lambda t) cos mu t, y_2(t) = e^(lambda t) sin mu t
|
||||||
|
$
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
$
|
||||||
|
lambda = -b / (2a), mu = sqrt(4a c - b^2) / (2a) != 0
|
||||||
|
$
|
||||||
|
|
||||||
|
The Wronskian of these solutions is nonzero, so $y_1$ and $y_2$ are a fundamental set of solutions. The general solution of the equation is
|
||||||
|
|
||||||
|
$
|
||||||
|
y(t) = c_1 e^(lambda t) cos mu t + c_2 e^(lambda t) sin mu t
|
||||||
|
$
|
||||||
|
|
||||||
|
== Amplitude and phase angle
|
||||||
|
|
||||||
|
Given $c_1 cos(omega_0 t) + c_2 sin(omega_0 t)$, express it as a single cosine
|
||||||
|
function so we can graph it. Recall this formula:
|
||||||
|
|
||||||
|
$
|
||||||
|
cos(alpha - beta) = cos(alpha) cos(beta) + sin(alpha) sin(beta)
|
||||||
|
$
|
||||||
|
|
||||||
|
Write
|
||||||
|
|
||||||
|
$
|
||||||
|
c_1 cos(omega_0 t) + c_2 sin(omega_0 t) \
|
||||||
|
= sqrt(c_1 ^2 + c_2 ^2) cos(omega_0 t - theta) = A cos(omega_0 t - theta)
|
||||||
|
$
|
||||||
|
|
||||||
|
where $A$ is the amplitude, $theta$ is the phase angle with $cos theta = (c_1)/sqrt(c_1^2 + c_2^2)$
|
||||||
|
|
Loading…
Reference in a new issue