alexandria/documents/by-course/math-6a/course-notes/main.typ

75 lines
1.6 KiB
Text
Raw Normal View History

2025-01-07 15:31:28 -08:00
#import "./dvd.typ": *
2025-01-09 16:15:18 -08:00
#import "@preview/cetz:0.3.1"
2025-01-07 15:31:28 -08:00
#show: dvdtyp.with(
title: "Math 6A Course Notes",
author: "Youwen Wu",
date: "Winter 2025",
subtitle: [Taught by Nathan Scheley],
)
#outline()
2025-01-07 16:58:41 -08:00
= Lecture #datetime(day: 7, month: 1, year: 2025).display()
2025-01-09 16:15:18 -08:00
== Review of fundamental concepts
2025-01-07 16:58:41 -08:00
2025-01-09 16:15:18 -08:00
You can parameterize curves.
2025-01-07 15:31:28 -08:00
2025-01-09 16:15:18 -08:00
#example[Unit circle][
$
x = cos(t) \
y = sin(t)
$
]
For an implicit equation
$ y = f(t) $
Parameterize it by setting
$ x = t \ y = f(t) $
Parameterize a line passing through two points $arrow(p)_1$ and $arrow(p)_2$ by
$ arrow(c)(t) = arrow(p)_1 + t (arrow(p)_2 - arrow(p)_1) $
Take the derivative of each component to find the velocity vector. The
magnitude of velocity is speed.
#example[
$
arrow(c)(t) = <5t, sin(t)> \
arrow(v)(t) = <5, cos(t)>
$
]
== Polar coordinates
Write a set of Cartesian coordinates in $RR^2$ as polar coordinates instead, by
a distance from origin $r$ and angle about the origin $theta$.
$ (x,y) -> (r, theta) $
= Lecture #datetime(day: 9, month: 1, year: 2025).display()
== Vectors
A dot product of two vectors is a generalization of the sense of size for a
point or vector.
#example[
How far is the point $x_1, x_2, x_3$ from the origin? \
Answer: $x_1^2 + x_2^2 + x_3^2$
]
2025-01-10 12:44:05 -08:00
#definition[
For vectors $u$ and $v$, where
$ v = vec(v_1, v_2, dots.v, n), u = vec(u_1, u_2, dots.v, n) $
The dot product is defined as
$ sum_(i=1)^n v_i dot u_i $
]
#proposition[
The dot product of two vectors is the product of their magnitudes and the cosine of the angle between.
$ arrow(v) dot arrow(w) = ||arrow(v)|| dot ||arrow(w)|| cos theta $
]