auto-update(nvim): 2025-02-05 01:22:45
This commit is contained in:
parent
dc49fba1f8
commit
5c7fd3ae2b
1 changed files with 49 additions and 0 deletions
|
@ -786,3 +786,52 @@ $
|
|||
$
|
||||
|
||||
where $A$ is the amplitude, $theta$ is the phase angle with $cos theta = (c_1)/sqrt(c_1^2 + c_2^2)$
|
||||
|
||||
== Some trig review (yuck)
|
||||
|
||||
#fact[
|
||||
The following trig identity is useful
|
||||
|
||||
$
|
||||
A cos(omega t) + B sin(omega t) = C cos(omega t - gamma)
|
||||
$
|
||||
|
||||
where $C = sqrt(A^2 + B^2)$, $sin(gamma) = B/C$, and $cos(gamma) = A/C$.
|
||||
]<sus-identity>
|
||||
|
||||
To find gamma, we can simply use inverse trig functions.
|
||||
|
||||
#example[
|
||||
Write $x(t) = -2cos(5t) - sin(5t)$ using only one cosine function:
|
||||
|
||||
First note that $A = -2$, $B - -1$, $omega = 5$. Then by @sus-identity,
|
||||
|
||||
$
|
||||
x(t) = -2cos(5t) - sin(5t) \
|
||||
= sqrt(5) cos(5t - gamma)
|
||||
$
|
||||
|
||||
Now note that
|
||||
$
|
||||
tan(gamma) &= sin(gamma) / cos(gamma) \
|
||||
&= 1 / 2
|
||||
$
|
||||
|
||||
Therefore we have the following:
|
||||
|
||||
$
|
||||
gamma = arctan(1/2)
|
||||
$
|
||||
|
||||
But this is not exactly right.
|
||||
|
||||
Recall that $arctan$ produces outputs only in $[-pi/2, pi/2]$. Therefore if
|
||||
we want $cos$ and $sin$ to be negative, we need to add an additional $pi$
|
||||
term. So in fact
|
||||
|
||||
$
|
||||
gamma = arctan(1/2) - pi
|
||||
$
|
||||
|
||||
Which makes $cos(5t + pi - arctan(1/2))$ negative.
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue