auto-update(nvim): 2025-02-05 01:22:45
This commit is contained in:
parent
dc49fba1f8
commit
5c7fd3ae2b
1 changed files with 49 additions and 0 deletions
|
@ -786,3 +786,52 @@ $
|
||||||
$
|
$
|
||||||
|
|
||||||
where $A$ is the amplitude, $theta$ is the phase angle with $cos theta = (c_1)/sqrt(c_1^2 + c_2^2)$
|
where $A$ is the amplitude, $theta$ is the phase angle with $cos theta = (c_1)/sqrt(c_1^2 + c_2^2)$
|
||||||
|
|
||||||
|
== Some trig review (yuck)
|
||||||
|
|
||||||
|
#fact[
|
||||||
|
The following trig identity is useful
|
||||||
|
|
||||||
|
$
|
||||||
|
A cos(omega t) + B sin(omega t) = C cos(omega t - gamma)
|
||||||
|
$
|
||||||
|
|
||||||
|
where $C = sqrt(A^2 + B^2)$, $sin(gamma) = B/C$, and $cos(gamma) = A/C$.
|
||||||
|
]<sus-identity>
|
||||||
|
|
||||||
|
To find gamma, we can simply use inverse trig functions.
|
||||||
|
|
||||||
|
#example[
|
||||||
|
Write $x(t) = -2cos(5t) - sin(5t)$ using only one cosine function:
|
||||||
|
|
||||||
|
First note that $A = -2$, $B - -1$, $omega = 5$. Then by @sus-identity,
|
||||||
|
|
||||||
|
$
|
||||||
|
x(t) = -2cos(5t) - sin(5t) \
|
||||||
|
= sqrt(5) cos(5t - gamma)
|
||||||
|
$
|
||||||
|
|
||||||
|
Now note that
|
||||||
|
$
|
||||||
|
tan(gamma) &= sin(gamma) / cos(gamma) \
|
||||||
|
&= 1 / 2
|
||||||
|
$
|
||||||
|
|
||||||
|
Therefore we have the following:
|
||||||
|
|
||||||
|
$
|
||||||
|
gamma = arctan(1/2)
|
||||||
|
$
|
||||||
|
|
||||||
|
But this is not exactly right.
|
||||||
|
|
||||||
|
Recall that $arctan$ produces outputs only in $[-pi/2, pi/2]$. Therefore if
|
||||||
|
we want $cos$ and $sin$ to be negative, we need to add an additional $pi$
|
||||||
|
term. So in fact
|
||||||
|
|
||||||
|
$
|
||||||
|
gamma = arctan(1/2) - pi
|
||||||
|
$
|
||||||
|
|
||||||
|
Which makes $cos(5t + pi - arctan(1/2))$ negative.
|
||||||
|
]
|
||||||
|
|
Loading…
Reference in a new issue